An interactive web application to estimate the total number of delivery addresses / mailboxes (Zustelladressen / Briefkästen )for a user-defined perimeter in Switzerland based on the number of apartments according to the Federal Building and Housing Register (GWR) of the Federal Statistical Office BFS and the number of businesses according to places from the Overture Maps Foundation. This tool is ideal for target group analysis, e.g., for planning marketing measures such as flyer distribution in neighborhoods.
-> application website : How many mailboxes are there?
Assumption: Each apartment 'ganzwhg' according to Feature Catalog 4.2 of the GWR also has a mailbox as a delivery address.
Assumption: The delivery address / mailbox corresponds to the Overture places dataset. Categories such as park etc. can be filtered out from the result list. Additionally, at least one delivery address / mailbox is added for addresses with the following CODES according to Feature Catalog 4.2 of the GWR:
CODE | KAT | BESCHREIBUNG |
---|---|---|
1010 | GKAT | Provisorische Unterkunft |
1020 | GKAT | Gebäude mit ausschliesslicher Wohnnutzung |
1030 | GKAT | Andere Wohngebäude (Wohngebäude mit Nebennutzung) |
1040 | GKAT | Gebäude mit teilweiser Wohnnutzung |
1060 | GKAT | Gebäude ohne Wohnnutzung |
1110 | GKLAS | Gebäude mit einer Wohnung |
1121 | GKLAS | Gebäude mit zwei Wohnungen |
1122 | GKLAS | Gebäude mit drei oder mehr Wohnungen |
1130 | GKLAS | Wohngebäude für Gemeinschaften |
1211 | GKLAS | Hotelgebäude |
1212 | GKLAS | Andere Gebäude für kurzfristige Beherbergung |
1220 | GKLAS | Bürogebäude |
1230 | GKLAS | Gross-und Einzelhandelsgebäude |
1231 | GKLAS | Restaurants und Bars in Gebäuden ohne Wohnnutzung |
1241 | GKLAS | Gebäude des Verkehrs- und Nachrichtenwesens ohne Garagen |
1251 | GKLAS | Industriegebäude |
1261 | GKLAS | Gebäude für Kultur- und Freizeitzwecke |
1262 | GKLAS | Museen und Bibliotheken |
1263 | GKLAS | Schul- und Hochschulgebäude |
1264 | GKLAS | Krankenhäuser und Facheinrichtungen des Gesundheitswesens |
1275 | GKLAS | Andere Gebäude für die kollektive Unterkunft |
- Polygon drawing function: Users can draw polygons on an interactive map or generate from a map.geo.admin.ch link.
- Automatic subdivision of large polygons: API limitations are circumvented by dividing into smaller polygons.
- GeoAdmin API integration: Precise data queries from the daily updated Swiss Building and Housing Register of the BFS.
- Overture Maps Foundation query integration: Precise data queries from the OSM / Overture Maps, monthly (?) updated places directory.
- Result display: Presentation of aggregated apartment/business data by address and street.
- Export option: Results can be displayed as a table and further processed.
Only requirement is to install uv
, either
with
curl -LsSf https://astral.sh/uv/install.sh | sh
or with
pip install uv
(or any other favorite package manager like homebrew
on the Mac).
The project consists of three main files:
- app.py: Main application for interactive use via streamlit.io How many mailboxes are there?
- madd_extract.py: Python functions as used in the main application.
- overture.py: Python function to access overturemaps via DUCKDB.
- Map display with drawing tools: Interactive map that allows drawing polygons.
- Polygon validation: Warning for large polygons (>10 km² and >150 km²) that may lead to long loading times.
- API query: Automated queries with support for subdividing large polygons.
- Result display:
- Total number of apartments
- Details by address and street
- Progress bar: Shows the progress of processing multiple subsets.
- split_polygon: Splits a large polygon into smaller polygons based on a maximum area.
- query_geoadmin_with_polygon: Sends API queries to GeoAdmin based on a given polygon.
- extract_wohnungen_and_counts: Aggregates apartment information from the API response.
- create_map: Creates an interactive map with Folium and drawing tools.
-
extract_freeform: Extracts 'freeform' fields from a list of address dictionaries or a JSON string.
-
clean_df: Cleans and transforms a DataFrame by processing certain columns.
-
fetch_latest_release_date: Retrieves the release date of the latest version of Overture Maps from the website.
- Clone the repository:
git clone https://github.com/davidoesch/wo-sind-briefkaesten.git
- Change to the directory:
cd wo-sind-briefkaesten
- Start the Streamlit application:
uv run streamlit run app.py
website: How many mailboxes are there?
- Draw a polygon on the map.
- Click the "Calculate" button.
- View the aggregated results directly in the app.
- Total number of mailboxes: Number of apartments in the drawn polygon.
- Apartment/business details by address and street: Tables with sorted data.
- Warnings for API limits: Notes on reducing the size of the polygons.
© 2024 David Oesch. This project is licensed under the MIT License.
Do you have questions or suggestions for improvement? David Oesch on GitHub.