Opinionated combination of typechecking libraries. Safecheck is a (very) minimal wrapper of the following libraries to provide a unified and simple-to-use interface:
Safecheck configures a unified typecheck
decorator that invokes beartype.beartype
if the function annotations
do not contain any jaxtyping
-related types. If the function contains jaxtyping
-related types typecheck
invokes jaxtyping.jaxtyped
with beartype.beartype
as a runtime type-checker.
safecheck
is highly-efficient, it adds no measurable overhead to the underlying type and shape checking logic.
One of the goals of safecheck
is to abstract over the runtime-typechecker and -shapechecker such that the concrete
implementation can be swapped without requiring changes to the codebase.
We re-export most of the functionality of beartype
and jaxtyping
, and it might be a good idea to disallow
imports from beartype
and jaxtyping
if you are using safecheck, e.g. using
ruff or Flake8.
To unify the jaxtyping.Array
interface, we export jax.Array as JaxArray
if
Jax is available, torch.Tensor as TorchArray
if
PyTorch is available and numpy.ndarray as NumpyArray
if
NumPy is available.
In addition to the unified typecheck
, the library provides a typecheck_overload
decorator.
typecheck(fn)
typechecks a function without jaxtyping annotations, otherwise additionally shapecheck the function.
typecheck_overload(fn)
ensures that an implementing function satisfied at least one of its defined overloads.
is_instance(obj, hint)
like isinstance(...)
, but better.
assert_instance(obj, hint)
like assert isinstance(...)
, but
better.
is_subtype(subhint, superhint)
tests if a type is a subtype of another type.
Validators enable runtime validation using typing.Annotated
, but these annotations are not enforced by any static
type checker and always require a runtime @typecheck
.
Is
for example: Annotated[str, Is[lambda x: x > 0)]]
IsAttr
for example: Annotated[NumpyArray, IsAttr["ndim", IsEqual[1]]]
IsEqual
for example: Annotated[list, IsEqual[list(range(42))]]
IsSubclass
for example: Annotated[type, IsSubclass[str, bytes]]
IsInstance
for example: Annotated[object, IsInstance[str, bytes]]
Exported union array types from safecheck
.
Shaped # Any type at all (e.g. object or string)
Num # Any integer, unsigned integer, floating, or complex
Real # Any integer, unsigned integer or floating
Inexact # Any floating or complex
Float # Any floating point
Complex # Any complex
Integer # Any integer or unsigned integer
UInt # Any unsigned integer
Int # Any signed integer
Exported array types from safecheck
.
Int8
Int16
Int32
Int64
Float16
Float32
Float64
Bool
UInt8
UInt16
UInt32
UInt64
Complex64
Complex128
Type-checking a simple function.
from safecheck import typecheck
@typecheck
def f(x: int) -> int:
return x
# f(1) -> 1
# f("1") -> fails
Type-checking a simple method.
from safecheck import typecheck
class A:
@typecheck
def f(self, x: int) -> int:
return x
# A().f(1) -> 1
# A().f("1") -> fails
Shape-checking a simple function.
from safecheck import typecheck, NumpyArray, Integer
@typecheck
def f(x: Integer[NumpyArray, "n"]) -> Integer[NumpyArray, "n"]:
return x
# import numpy as np
# f(np.array([1, 2, 3, 4, 5])) -> array([1, 2, 3, 4, 5])
# f(np.array([1.0, 2.0, 3.0, 4.0, 5.0])) -> fails
# f(np.array([[1], [2], [3], [4], [5]])) -> fails
Shape-checking a simple method.
from safecheck import typecheck, NumpyArray, Integer
class A:
@typecheck
def f(self, x: Integer[NumpyArray, "n"]) -> Integer[NumpyArray, "n"]:
return x
# import numpy as np
# A().f(np.array([1, 2, 3, 4, 5])) -> array([1, 2, 3, 4, 5])
# A().f(np.array([1.0, 2.0, 3.0, 4.0, 5.0])) -> fails
# A().f(np.array([[1], [2], [3], [4], [5]])) -> fails
Type-checking an overloaded function.
from typing_extensions import overload # python < 3.11, otherwise ``from typing import overload``
from safecheck import typecheck_overload
@overload
def f(x: int) -> int:
...
@typecheck_overload
def f(x):
return x
# f(1) -> 1
# f("1") -> fails
Type-checking an overloaded method.
from typing_extensions import overload # python < 3.11, otherwise ``from typing import overload``
from safecheck import typecheck_overload
class A:
@overload
def f(self, x: int) -> int:
...
@typecheck_overload
def f(self, x):
return x
# A().f(1) -> 1
# A().f("1") -> fails
Shape-checking an overloaded function.
from typing_extensions import overload # python < 3.11, otherwise ``from typing import overload``
from safecheck import typecheck_overload, NumpyArray, Integer
@overload
def f(x: Integer[NumpyArray, "n"]) -> Integer[NumpyArray, "n"]:
...
@typecheck_overload
def f(x):
return x
# import numpy as np
# f(np.array([1, 2, 3, 4, 5])) -> array([1, 2, 3, 4, 5])
# f(np.array([1.0, 2.0, 3.0, 4.0, 5.0])) -> fails
# f(np.array([[1], [2], [3], [4], [5]])) -> fails
Shape-checking an overloaded method.
from typing_extensions import overload # python < 3.11, otherwise ``from typing import overload``
from safecheck import typecheck_overload, NumpyArray, Integer
class A:
@overload
def f(self, x: Integer[NumpyArray, "n"]) -> Integer[NumpyArray, "n"]:
...
@typecheck_overload
def f(self, x):
return x
# import numpy as np
# A().f(np.array([1, 2, 3, 4, 5])) -> array([1, 2, 3, 4, 5])
# A().f(np.array([1.0, 2.0, 3.0, 4.0, 5.0])) -> fails
# A().f(np.array([[1], [2], [3], [4], [5]])) -> fails