This is a fork of Google's "smhasher" suite, available here:
https://chromium.googlesource.com/external/smhasher
It incorporates changes from Reini Urban's fork as well. See:
https://github.com/rurban/smhasher
Compared to those versions it has been substantially extended to:
- Use better stats internally (g-test)
- Better test how the hash functions are seeded
- Separate timing of hashing from that of initialization
My personal interest is to develop and test hash functions which are suitable in contexts where the hash function will be seeded relatively rarely, must perform well, are sufficiently "strong" that they can be safely used to hash untrusted data.
This is a level of security below that of a proper message digest, but above that of "your average hash function".
In particular a hash function must not leak information about its seed, and must not have any inherent weaknesses that allow an attacker to construct a collision attack without knowing the seed.
I have tried to enhance the smhasher package to make it easier to test the scenario outlined above. Your mileage may vary.
It would seem that smhasher was originally intended to test hash functions with 32 bit seeds, and this requirement was baked into the design in various ways. This is problematic because a hash with a larger seed will have to somehow map the 32-bit seed into a larger space, interfering with testing. While some hash functions have well defined mappings to handle 32 bit seeds many, if not most, do not. In a test like the avalanche test, the results of 32 bit test can easily differ from that of true seed-size testing.
So to properly test a hash function you need to be able to deal with whatever seed size it requires, and test based on that size.
Another issue is that some hash functions have expensive seeding operations which are intended to be amortized to a single seeding for many hash operations. Timing stats for such functions will not be accurate unless the action of seeding the state, and actually executing the hash function are separated.
So where the old interface was:
typedef void (*pfHash) ( const void *blob, const int len, const uint32_t seed, void *out );
I have changed to a new interface with two functions like this:
typedef void (*pfSeedState) ( const int seedbits, const void *seed, const void *state );
typedef void (*pfHashWithState) ( const void *blob, const int len, const void *state, void *out );
The seedbits argument in pfSeedState is provided to allow a single seed preparation function serve multiple seed sizes if required. Most implementations would ignore it as it would always be constant.
The pfSeedState function is optional, and when omitted it is assumed that the input "state" to the hash function corresponds exactly to that of the seed. In other words when there is no pfSeedState function defined the configuration for the hash should set the "statebits" to be the same as the "seedbits", and the "state seeding" operation will simply pass through the seed as a pointer.
The end result of all of this is that we now support any seed size, and provide support for no, shared, or unique state seeding functions.
You will need to:
-
Implement functions that match the expected API.
-
Update main.cpp to contain a new HashInfo entry for the hash
typedef struct HashInfo { const char * name; const char * desc; int seedbits; int statebits; int hashbits; uint32_t verification; pfSeedState seed_state; pfHashWithState hash_with_state; } HashInfo;
For example:
{ "Spooky128", "Bob Jenkins' SpookyHash, 128-bit seed, 128-bit result", 128, 128, 128, 0xC633C71E, SpookyHash_seed_state_test, SpookyHash128_with_state_test },
The verification value can be set to 0x0, in which case failed verification tests will produce a warning, but allow you to continue testing, or you can just put whatever you like in there as we will update its value to be correct in a following step.
-
Compile And Build
You can run ./SMHasher --validate to see if any hashes fail test. If they do the test harness will not let you continue until you correct them. The only exceptions are for those with a verification code of 0. If everything is good then you should see:
Self-test PASSED.
At this point if you set the verification value to 0 you are done. But you will want to return here later once you have finalized the implementation of your hash function.
-
Update the Verification Code for your Hash
You can do this two ways, the first is run
perl update_hashes.pl
which /should/ update your hashes verification code (and only its code) automagically. If it says it has updated more then there is something wrong. Alternatively you can do what it does manually and run
./SMHasher --validate
which will produce output saying what the expected, and actual verification codes were, you can then C&P the corrected code into the structure. For example:
./SMHasher --validate Self-test FAILED! Spooky128 - Verification value 0xC633C71E : Failed! (Expected 0xC633C70E)
I would use the perl script personally.
-
Build Again.
Once you have corrected the verification code you need to rebuild to bake it in. Once that is complete you are done. Happy testing!
I have not reviewed ALL of the smhasher tests in detail yet. I have reviewed most of the stats logic, especially logic related to determining if a set of hash values is "random" or not, and upgraded it to use g-test.
If it is not documented below then I have not gotten around to it yet.
This does some very basic tests. It verifies that the hash is consistent and that simple key changes produce changed hashes. It also verifies that the hash is capable of hashing a string of nulls without producing excess collisions, this is a simpler version of the "Zeroes" test.
[[[ Sanity Tests ]]] - BeagleHash_32_112 BeagleHash_32_112 - Verification value 0x5D4AA95B : Testing! Sanity check simple key bit flips and consistency..........PASS Sanity check null suffixes change the hash (simple)..........PASS
This test actually contains two subtests which can be run independently.
Times hashing very long keys at different alignments. Architectures that allow unaligned access will probably not see much difference at the different alignments.
[[[ Speed Tests ]]] - BeagleHash_32_112 Bulk speed test - 262144-byte keys Alignment 7 - 1.839 bytes/cycle - 5260.38 MiB/sec @ 3 ghz Alignment 6 - 1.839 bytes/cycle - 5260.31 MiB/sec @ 3 ghz Alignment 5 - 1.839 bytes/cycle - 5260.33 MiB/sec @ 3 ghz Alignment 4 - 1.839 bytes/cycle - 5260.38 MiB/sec @ 3 ghz Alignment 3 - 1.839 bytes/cycle - 5260.19 MiB/sec @ 3 ghz Alignment 2 - 1.839 bytes/cycle - 5260.34 MiB/sec @ 3 ghz Alignment 1 - 1.839 bytes/cycle - 5260.26 MiB/sec @ 3 ghz Alignment 0 - 1.850 bytes/cycle - 5292.65 MiB/sec @ 3 ghz Average - 1.840 bytes/cycle - 5264.36 MiB/sec @ 3 ghz
Times hashing keys of various lengths, ranging from the empty string to relatively long strings.
BeagleHash_32_112 0 byte keys 15.254 c/h BeagleHash_32_112 1 byte keys 31.000 c/h 31.000 c/b 0.032 b/c BeagleHash_32_112 2 byte keys 35.022 c/h 17.511 c/b 0.057 b/c BeagleHash_32_112 3 byte keys 35.000 c/h 11.667 c/b 0.086 b/c BeagleHash_32_112 4 byte keys 36.000 c/h 9.000 c/b 0.111 b/c BeagleHash_32_112 5 byte keys 36.000 c/h 7.200 c/b 0.139 b/c BeagleHash_32_112 6 byte keys 36.000 c/h 6.000 c/b 0.167 b/c BeagleHash_32_112 7 byte keys 36.000 c/h 5.143 c/b 0.194 b/c BeagleHash_32_112 8 byte keys 46.000 c/h 5.750 c/b 0.174 b/c BeagleHash_32_112 9 byte keys 46.000 c/h 5.111 c/b 0.196 b/c BeagleHash_32_112 10 byte keys 46.000 c/h 4.600 c/b 0.217 b/c BeagleHash_32_112 11 byte keys 46.000 c/h 4.182 c/b 0.239 b/c BeagleHash_32_112 12 byte keys 46.000 c/h 3.833 c/b 0.261 b/c BeagleHash_32_112 13 byte keys 46.000 c/h 3.538 c/b 0.283 b/c BeagleHash_32_112 14 byte keys 46.000 c/h 3.286 c/b 0.304 b/c BeagleHash_32_112 15 byte keys 46.000 c/h 3.067 c/b 0.326 b/c BeagleHash_32_112 16 byte keys 49.981 c/h 3.124 c/b 0.320 b/c BeagleHash_32_112 17 byte keys 48.994 c/h 2.882 c/b 0.347 b/c BeagleHash_32_112 18 byte keys 49.000 c/h 2.722 c/b 0.367 b/c BeagleHash_32_112 19 byte keys 49.648 c/h 2.613 c/b 0.383 b/c BeagleHash_32_112 20 byte keys 49.000 c/h 2.450 c/b 0.408 b/c BeagleHash_32_112 21 byte keys 48.733 c/h 2.321 c/b 0.431 b/c BeagleHash_32_112 22 byte keys 49.000 c/h 2.227 c/b 0.449 b/c BeagleHash_32_112 23 byte keys 48.991 c/h 2.130 c/b 0.469 b/c BeagleHash_32_112 24 byte keys 55.776 c/h 2.324 c/b 0.430 b/c BeagleHash_32_112 25 byte keys 55.923 c/h 2.237 c/b 0.447 b/c BeagleHash_32_112 26 byte keys 55.963 c/h 2.152 c/b 0.465 b/c BeagleHash_32_112 27 byte keys 55.646 c/h 2.061 c/b 0.485 b/c BeagleHash_32_112 28 byte keys 55.922 c/h 1.997 c/b 0.501 b/c BeagleHash_32_112 29 byte keys 55.000 c/h 1.897 c/b 0.527 b/c BeagleHash_32_112 30 byte keys 55.262 c/h 1.842 c/b 0.543 b/c BeagleHash_32_112 31 byte keys 54.992 c/h 1.774 c/b 0.564 b/c BeagleHash_32_112 Average < 32 45.816 c/h 2.956 c/b 0.338 b/c BeagleHash_32_112 32 byte keys 57.592 c/h 1.800 c/b 0.556 b/c BeagleHash_32_112 36 byte keys 57.000 c/h 1.583 c/b 0.632 b/c BeagleHash_32_112 40 byte keys 63.000 c/h 1.575 c/b 0.635 b/c BeagleHash_32_112 44 byte keys 63.985 c/h 1.454 c/b 0.688 b/c BeagleHash_32_112 48 byte keys 66.988 c/h 1.396 c/b 0.717 b/c BeagleHash_32_112 52 byte keys 65.000 c/h 1.250 c/b 0.800 b/c BeagleHash_32_112 56 byte keys 72.184 c/h 1.289 c/b 0.776 b/c BeagleHash_32_112 60 byte keys 71.738 c/h 1.196 c/b 0.836 b/c BeagleHash_32_112 64 byte keys 74.352 c/h 1.162 c/b 0.861 b/c BeagleHash_32_112 68 byte keys 73.191 c/h 1.076 c/b 0.929 b/c BeagleHash_32_112 72 byte keys 80.513 c/h 1.118 c/b 0.894 b/c BeagleHash_32_112 76 byte keys 79.667 c/h 1.048 c/b 0.954 b/c BeagleHash_32_112 80 byte keys 82.933 c/h 1.037 c/b 0.965 b/c BeagleHash_32_112 84 byte keys 81.762 c/h 0.973 c/b 1.027 b/c BeagleHash_32_112 88 byte keys 89.614 c/h 1.018 c/b 0.982 b/c BeagleHash_32_112 92 byte keys 88.339 c/h 0.960 c/b 1.041 b/c BeagleHash_32_112 96 byte keys 89.750 c/h 0.935 c/b 1.070 b/c BeagleHash_32_112 100 byte keys 90.725 c/h 0.907 c/b 1.102 b/c BeagleHash_32_112 104 byte keys 97.953 c/h 0.942 c/b 1.062 b/c BeagleHash_32_112 108 byte keys 97.282 c/h 0.901 c/b 1.110 b/c BeagleHash_32_112 112 byte keys 100.531 c/h 0.898 c/b 1.114 b/c BeagleHash_32_112 116 byte keys 99.792 c/h 0.860 c/b 1.162 b/c BeagleHash_32_112 120 byte keys 106.307 c/h 0.886 c/b 1.129 b/c BeagleHash_32_112 124 byte keys 105.801 c/h 0.853 c/b 1.172 b/c BeagleHash_32_112 Average < 128 61.109 c/h 1.445 c/b 0.692 b/c BeagleHash_32_112 128 byte keys 108.190 c/h 0.845 c/b 1.183 b/c BeagleHash_32_112 256 byte keys 148.665 c/h 0.581 c/b 1.722 b/c BeagleHash_32_112 512 byte keys 304.271 c/h 0.594 c/b 1.683 b/c BeagleHash_32_112 1024 byte keys 583.592 c/h 0.570 c/b 1.755 b/c BeagleHash_32_112 2048 byte keys 1145.131 c/h 0.559 c/b 1.788 b/c BeagleHash_32_112 4096 byte keys 2239.439 c/h 0.547 c/b 1.829 b/c BeagleHash_32_112 8192 byte keys 4451.394 c/h 0.543 c/b 1.840 b/c BeagleHash_32_112 16384 byte keys 8878.160 c/h 0.542 c/b 1.845 b/c BeagleHash_32_112 32768 byte keys 17739.524 c/h 0.541 c/b 1.847 b/c BeagleHash_32_112 65536 byte keys 35449.071 c/h 0.541 c/b 1.849 b/c BeagleHash_32_112 Average Bulk 1128.326 c/h 0.559 c/b 1.790 b/c
This hashes strings of various sizes with relatively few bits set, and then looks for excess collisions. Hash functions with a weak mix function, or weak seeding will often fail these tests.
(NB: I don't know too much about these tests. More to come later.)
[[[ Differential Tests ]]] - BeagleHash_32_112 Testing 8303632 up-to-5-bit differentials in 64-bit keys -> 32 bit hashes. 1000 reps, 8303632000 total tests, expecting 1.93 random collisions.......... 6 total collisions, of which 6 single collisions were ignored Testing 11017632 up-to-4-bit differentials in 128-bit keys -> 32 bit hashes. 1000 reps, 11017632000 total tests, expecting 2.57 random collisions.......... 2 total collisions, of which 2 single collisions were ignored Testing 2796416 up-to-3-bit differentials in 256-bit keys -> 32 bit hashes. 1000 reps, 2796416000 total tests, expecting 0.65 random collisions.......... 0 total collisions, of which 0 single collisions were ignored
This tests that a hash meets the "strict avalanche criteria", which is that when changing any single bit of the input (seed or key) we expect about 50% of the output bits to change.
This is tested at various key lengths, including 0 byte keys, and stats are calculated about how input bit affects the output, and whether the results are random or not.
Passing tests look like this:
[[[ Avalanche Tests ]]] - BeagleHash_32_112 seed-bits: 112 hash-bits: 32 Samples 1000000, expected error 0.00025600, confidence level 99.99994267% Testing 0-bit keys.......... ok. worst-bit: 0.402% error-ratio: 1.012786e+00 Testing 8-bit keys.......... ok. worst-bit: 0.398% error-ratio: 9.612077e-01 Testing 16-bit keys.......... ok. worst-bit: 0.385% error-ratio: 9.728366e-01 Testing 24-bit keys.......... ok. worst-bit: 0.383% error-ratio: 1.011299e+00 Testing 32-bit keys.......... ok. worst-bit: 0.365% error-ratio: 9.807127e-01 Testing 40-bit keys.......... ok. worst-bit: 0.381% error-ratio: 9.642346e-01 Testing 48-bit keys.......... ok. worst-bit: 0.431% error-ratio: 1.014530e+00 Testing 56-bit keys.......... ok. worst-bit: 0.411% error-ratio: 1.004617e+00 Testing 64-bit keys.......... ok. worst-bit: 0.377% error-ratio: 9.840337e-01 Testing 72-bit keys.......... ok. worst-bit: 0.441% error-ratio: 9.754174e-01 Testing 80-bit keys.......... ok. worst-bit: 0.379% error-ratio: 1.019198e+00 Testing 88-bit keys.......... ok. worst-bit: 0.375% error-ratio: 9.997662e-01 Testing 96-bit keys.......... ok. worst-bit: 0.374% error-ratio: 9.804174e-01 Testing 104-bit keys.......... ok. worst-bit: 0.377% error-ratio: 9.984745e-01 Testing 112-bit keys.......... ok. worst-bit: 0.438% error-ratio: 9.695704e-01 Testing 120-bit keys.......... ok. worst-bit: 0.378% error-ratio: 1.003672e+00 Testing 128-bit keys.......... ok. worst-bit: 0.365% error-ratio: 1.017423e+00 Testing 136-bit keys.......... ok. worst-bit: 0.377% error-ratio: 9.985610e-01 Testing 144-bit keys.......... ok. worst-bit: 0.368% error-ratio: 9.937084e-01 Testing 152-bit keys.......... ok. worst-bit: 0.397% error-ratio: 1.000956e+00
Worst bit shows how many percentages away from the expected 50/50 changed/unchanged ratio we want to see. Anything under %1.00 is considered acceptable. A scaled expected error is calculated for the test, and then the sum of the square of the difference from 0.5 is used to calculate an "error ratio". A good hash function should have a ratio of very close to or below 1. A bad hash function could have wildly higher numbers.
When tests fail two charts are produced which show how every bit of the input affected every bit of the hash produced. One chart shows the distance from the expected %50 change, and the other shows the g-test probability of getting that result. Additionally each "row" and "column" is checked to ensure that they are correct as well. The following is an example which shows a hash function which really does not mix very well at all, with many input bits having little if any affect on the output. Only the positions with "." in them are "ok".
[[[ Avalanche Tests ]]] - bernstein seed-bits: 32 hash-bits: 32 Samples 1000000, expected error 0.00025600, confidence level 99.99994267% Testing 32-bit keys.......... not ok! worst-bit: 100.000% error-ratio: 7.624407e+05 +---------------------------------------------------+ |012345678901234567890123456789012345678901234567890| +---------------------------------------------------+ Scale: |.1234567890abcdefghijklmnopqrstuvwxyzãäåêëîïðñôõöûü| |üÿABCDEFGHIJKLMNOPQRSTUVWXYZÂÃÄÅÊËÑÔÕÖÛÜÝø¤*©®¶&%@#| +---------------------------------------------------+ |pct diff from 50%: abs((0.5-(changed/reps))*2) *100| +--------------------------------+ |0 1 2 3 | |01234567890123456789012345678901| +--------------------------------+ seed 0.0 |#.üXÛ©&%1üXÖ6BmKÅÝ5öWcïUÕ*¶%@###| seed 1.0 |##.üXÖ©&%1üXÖ6BmKÅÝ5öWcïUÕ*¶%@##| seed 2.0 |###.üXÛ©&%1üXÖ6BnKÅÝ5öWcïUÕ*¶%@#| seed 3.0 |####.üXÖ©&%1üXÖ6BnKÅÝ5öWcïUÕ*¶%@| seed 4.0 |#####.üXÛ©&%1üXÖ7BmKÅÝ5öWcïUÕ*¶%| seed 5.0 |######.üXÛ©&%1üXÖ6BnKÅÝ5öWcïUÕ*¶| seed 6.0 |#######.üXÛ©&%1üXÖ6BmKÅÝ5öWcðUÕ*| seed 7.0 |########.üXÛ©&%1üXÖ6BmKÅÝ5õWcïUÕ| seed 8.0 |#########.üXÖ©&%1üXÖ6BnKÅÝ5öWcïU| seed 9.0 |##########.üXÖ©&%1üXÖ6BmKÅÝ5öWcï| seed 10.0 |###########.üXÛ©&%1üXÖ6BmKÅÝ5öWc| seed 11.0 |############.üXÖ©&%1üXÖ6BmKÅÝ5öW| seed 12.0 |#############.üXÖ©&%1üXÖ6BmKÅÝ5ö| seed 13.0 |##############.üXÖ©&%1üXÖ6BmKÅÝ5| seed 14.0 |###############.üXÖ©&%1üXÖ6BmKÅÝ| seed 15.0 |################.üXÛ©&%1üXÖ6BmKÅ| seed 16.0 |#################.üXÖ©&%1üXÖ6BmK| seed 17.0 |##################.üXÖ©&%1üXÖ6Bm| seed 18.0 |###################.üXÖ©&%1üXÖ6B| seed 19.0 |####################.üXÛ©&%1üXÖ6| seed 20.0 |#####################.üXÛ©&%1üXÖ| seed 21.0 |######################.üXÖ©&%1üX| seed 22.0 |#######################.üXÖ©&%1ü| seed 23.0 |########################.üXÖ©&%1| seed 24.0 |#########################.üXÛ©&%| seed 25.0 |##########################.üXÛ©&| seed 26.0 |###########################.üXÛ©| seed 27.0 |############################.üXÖ| seed 28.0 |#############################.üX| seed 29.0 |##############################.ü| seed 30.0 |###############################.| seed 31.0 |################################| key 0.0 |#.üXÛ©3AnKÅ9DmJÅ0ñVÕ*&%@########| key 1.0 |##.üXÛ©3AnKÅ0DmJÅ0ñVÕ*&%@#######| key 2.0 |###.üXÖ©3AnKÅ9DmJÅ0ñVÕ*&%@######| key 3.0 |####.üXÖ©3AnKÅ0DmJÅ0ñUÕ*&%@#####| key 4.0 |#####.üXÛ©3AnKÅ0DmJÅ0ñVÕ*&%@####| key 5.0 |######.üXÛ©3AnKÅ0DmJÅ0ñVÕ*&%@###| key 6.0 |#######.üXÛ©3AnKÅ9DmJÅ0ñVÕ*&%@##| key 7.0 |########.üXÛ©3AnKÅ0DmJÅ0ñVÕ*&%@#| key 8.0 |#.üXÖ©&2ûXÖ6õVÖ*&%@#############| key 9.0 |##.üXÖ©&2ûXÖ6õVÖ*&%@############| key 10.0 |###.üXÖ©&2ûXÖ7õVÖ*&%@###########| key 11.0 |####.üXÛ©&2ûXÖ6õVÖ*&%@##########| key 12.0 |#####.üXÛ©&2ûXÖ6õVÖ*&%@#########| key 13.0 |######.üXÛ©&2ûXÖ6õVÖ*&%@########| key 14.0 |#######.üXÖ©&2ûXÖ6õVÖ*&%@#######| key 15.0 |########.üXÖ©&2ûXÖ6õVÖ*&%@######| key 16.0 |#.üXÖ©3ûWÖ©&%@##################| key 17.0 |##.üXÛ©3öWÖ©&%@#################| key 18.0 |###.üXÖ©3ûWÖ©&%@################| key 19.0 |####.üXÖ©3öWÖ©&%@###############| key 20.0 |#####.üXÖ©3öWÖ*&%@##############| key 21.0 |######.üXÛ©3öWÖ©&%@#############| key 22.0 |#######.üXÖ©3öWÖ*&%@############| key 23.0 |########.üXÛ©3öWÖ©&%@###########| key 24.0 |#.üXÖ©&%@#######################| key 25.0 |##.üXÛ©&%@######################| key 26.0 |###.üXÖ©&%@#####################| key 27.0 |####.üXÖ©&%@####################| key 28.0 |#####.üXÛ©&%@###################| key 29.0 |######.üXÛ©&%@##################| key 30.0 |#######.üXÖ©&%@#################| key 31.0 |########.üXÖ©&%@################| +--------------------------------+ +---------------------------------------------------+ |012345678901234567890123456789012345678901234567890| +---------------------------------------------------+ Scale: |.1234567890abcdefghijklmnopqrstuvwxyzãäåêëîïðñôõöûü| |üÿABCDEFGHIJKLMNOPQRSTUVWXYZÂÃÄÅÊËÑÔÕÖÛÜÝø¤*©®¶&%@#| +---------------------------------------------------+ |scaled p-value above confidence level (zero is ok) | +--------------------------------+ |0 1 2 3 | |01234567890123456789012345678901| +--------------------------------+ seed 0.0 |#.##############################| seed 1.0 |##.######@######################| seed 2.0 |###.######@#####################| seed 3.0 |####.######@####################| seed 4.0 |#####.######@###################| seed 5.0 |######.#########################| seed 6.0 |#######.######@#################| seed 7.0 |########.######@################| seed 8.0 |#########.######@###############| seed 9.0 |##########.######@##############| seed 10.0 |###########.######@#############| seed 11.0 |############.###################| seed 12.0 |#############.######@###########| seed 13.0 |##############.#################| seed 14.0 |###############.######@#########| seed 15.0 |################.###############| seed 16.0 |#################.######@#######| seed 17.0 |##################.######@######| seed 18.0 |###################.######@#####| seed 19.0 |####################.###########| seed 20.0 |#####################.######@###| seed 21.0 |######################.######@##| seed 22.0 |#######################.######@#| seed 23.0 |########################.######@| seed 24.0 |#########################.######| seed 25.0 |##########################.#####| seed 26.0 |###########################.####| seed 27.0 |############################.###| seed 28.0 |#############################.##| seed 29.0 |##############################.#| seed 30.0 |###############################.| seed 31.0 |################################| key 0.0 |#.##############################| key 1.0 |##.#############################| key 2.0 |###.############################| key 3.0 |####.###########################| key 4.0 |#####.##########################| key 5.0 |######.#########################| key 6.0 |#######.########################| key 7.0 |########.#######################| key 8.0 |#.##############################| key 9.0 |##.#############################| key 10.0 |###.############################| key 11.0 |####.###########################| key 12.0 |#####.##########################| key 13.0 |######.#########################| key 14.0 |#######.########################| key 15.0 |########.#######################| key 16.0 |#.##############################| key 17.0 |##.#############################| key 18.0 |###.############################| key 19.0 |####.###########################| key 20.0 |#####.##########################| key 21.0 |######.#########################| key 22.0 |#######.########################| key 23.0 |########.#######################| key 24.0 |#.##############################| key 25.0 |##.#############################| key 26.0 |###.############################| key 27.0 |####.###########################| key 28.0 |#####.##########################| key 29.0 |######.#########################| key 30.0 |#######.########################| key 31.0 |########.#######################| +--------------------------------+ 1985 of 2048 bits failed (96.92%) failed at 99.999943 confidence g-test: 100.000000% sum-error-square: 195.18480644 key/seed errors: 64/64 - seed bit 0 gtest probability not random: 100.0000 (10437402/21562598) - seed bit 1 gtest probability not random: 100.0000 (10435821/21564179) - key bit 0 gtest probability not random: 100.0000 (9429356/22570644) - key bit 1 gtest probability not random: 100.0000 (9429964/22570036) - with 30 more seed errors and 30 more key errors not described above. hash bit-level errors: 32/32 - hash bit 0 gtest-prob not-random: 100.0000 (5000000/59000000) - hash bit 1 gtest-prob not-random: 100.0000 (7500126/56499874) - hash bit 2 gtest-prob not-random: 100.0000 (8749735/55250265) - with 29 more hash bit errors not described above.
This tests various cyclic keys to ensure that they produce the expected collision counts.
[[[ Keyset 'Cyclic' Tests ]]] - BeagleHash_32_112 Keyset 'Cyclic' - 8 cycles of 4 bytes - 10000000 keys Testing collisions - Expected 11641.53, actual 11598.00 ( 1.00x) Testing distribution - ok. (99.999943 confidence) Keyset 'Cyclic' - 8 cycles of 5 bytes - 10000000 keys Testing collisions - Expected 11641.53, actual 11801.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence) Keyset 'Cyclic' - 8 cycles of 6 bytes - 10000000 keys Testing collisions - Expected 11641.53, actual 11732.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence) Keyset 'Cyclic' - 8 cycles of 7 bytes - 10000000 keys Testing collisions - Expected 11641.53, actual 11759.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence) Keyset 'Cyclic' - 8 cycles of 8 bytes - 10000000 keys Testing collisions - Expected 11641.53, actual 11542.00 ( 0.99x) Testing distribution - ok. (99.999943 confidence)
This tests keys composed of 2-character tuples repeated to various lengths.
[[[ Keyset 'TwoBytes' Tests ]]] - BeagleHash_32_112 Keyset 'TwoBytes' - up-to-4-byte keys, 652545 total keys Testing collisions - Expected 49.57, actual 44.00 ( 0.89x) Testing distribution - ok. (99.999943 confidence) Keyset 'TwoBytes' - up-to-8-byte keys, 5471025 total keys Testing collisions - Expected 3484.56, actual 3520.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence) Keyset 'TwoBytes' - up-to-12-byte keys, 18616785 total keys Testing collisions - Expected 40347.77, actual 40516.00 ( 1.00x) Testing distribution - ok. (99.999943 confidence) Keyset 'TwoBytes' - up-to-16-byte keys, 44251425 total keys Testing collisions - Expected 227963.15, actual 227111.00 ( 1.00x) Testing distribution - ok. (99.999943 confidence) Keyset 'TwoBytes' - up-to-20-byte keys, 86536545 total keys Testing collisions - Expected 871784.70, actual 865018.00 ( 0.99x) Testing distribution - ok. (99.999943 confidence)
This tests strings of various lengths with very few bits set. I have found This test is relatively sensitive. It will often fail when the other tests do not, especially when a hash has a weak mixing function.
[[[ Keyset 'Sparse' Tests ]]] - BeagleHash_32_112 Keyset 'Sparse' - 32-bit keys with up to 6 bits set - 1149017 keys Testing collisions - Expected 153.70, actual 167.00 ( 1.09x) Testing distribution - ok. (99.999943 confidence) Keyset 'Sparse' - 40-bit keys with up to 6 bits set - 4598479 keys Testing collisions - Expected 2461.72, actual 2481.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence) Keyset 'Sparse' - 48-bit keys with up to 5 bits set - 1925357 keys Testing collisions - Expected 431.55, actual 400.00 ( 0.93x) Testing distribution - ok. (99.999943 confidence) Keyset 'Sparse' - 56-bit keys with up to 5 bits set - 4216423 keys Testing collisions - Expected 2069.66, actual 2104.00 ( 1.02x) Testing distribution - ok. (99.999943 confidence) Keyset 'Sparse' - 64-bit keys with up to 5 bits set - 8303633 keys Testing collisions - Expected 8026.87, actual 8097.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence) Keyset 'Sparse' - 96-bit keys with up to 4 bits set - 3469497 keys Testing collisions - Expected 1401.34, actual 1386.00 ( 0.99x) Testing distribution - ok. (99.999943 confidence) Keyset 'Sparse' - 256-bit keys with up to 3 bits set - 2796417 keys Testing collisions - Expected 910.36, actual 974.00 ( 1.07x) Testing distribution - ok. (99.999943 confidence) Keyset 'Sparse' - 2048-bit keys with up to 2 bits set - 2098177 keys Testing collisions - Expected 512.50, actual 517.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence)
I don't know what these tests do in detail yet.
[[[ Keyset 'Combination Lowbits' Tests ]]] - BeagleHash_32_112 Keyset 'Combination' - up to 8 blocks from a set of 8 - 19173960 keys Testing collisions - Expected 42799.01, actual 43179.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence) [[[ Keyset 'Combination Highbits' Tests ]]] - BeagleHash_32_112 Keyset 'Combination' - up to 8 blocks from a set of 8 - 19173960 keys Testing collisions - Expected 42799.01, actual 42912.00 ( 1.00x) Testing distribution - ok. (99.999943 confidence) [[[ Keyset 'Combination 0x8000000' Tests ]]] - BeagleHash_32_112 Keyset 'Combination' - up to 20 blocks from a set of 2 - 2097150 keys Testing collisions - Expected 512.00, actual 536.00 ( 1.05x) Testing distribution - ok. (99.999943 confidence) [[[ Keyset 'Combination 0x0000001' Tests ]]] - BeagleHash_32_112 Keyset 'Combination' - up to 20 blocks from a set of 2 - 2097150 keys Testing collisions - Expected 512.00, actual 479.00 ( 0.94x) Testing distribution - ok. (99.999943 confidence) [[[ Keyset 'Combination Hi-Lo' Tests ]]] - BeagleHash_32_112 Keyset 'Combination' - up to 6 blocks from a set of 15 - 12204240 keys Testing collisions - Expected 17339.30, actual 17502.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence)
These test that keys of various sizes produce hashes with good distributions across all of the bit ranges in the hash.
The exact validity of these tests is yet to be determined. Failing them is definitely bad, but passing these tests does not necessarily say much.
Currently the rule for failing a test is: the g-test of the bucket distribution must exceed the required confidence level, AND the distribution must produce a bad quality score. I have tested using the g-test alone and even hash functions like sha1 fail the tests, on the other hand, what the g-test considers non-random the quality score metric may consider within tolerance. These test need further mathematical rigour.
[[[ Keyset 'Window' Tests ]]] - BeagleHash_32_112 Keyset 'Windowed' - 64-bit key, 20-bit window - 64 tests, 1048576 keys per test Window at 0 - Testing collisions - Expected 128.00, actual 147.00 ( 1.15x) Testing distribution - ok. (99.999943 confidence) Window at 1 - Testing collisions - Expected 128.00, actual 127.00 ( 0.99x) Testing distribution - ok. (99.999943 confidence) Window at 2 - Testing collisions - Expected 128.00, actual 131.00 ( 1.02x) Testing distribution - ok. (99.999943 confidence) Window at 3 - Testing collisions - Expected 128.00, actual 127.00 ( 0.99x) Testing distribution - ok. (99.999943 confidence) Window at 4 - Testing collisions - Expected 128.00, actual 137.00 ( 1.07x) Testing distribution - ok. (99.999943 confidence) Window at 5 - Testing collisions - Expected 128.00, actual 139.00 ( 1.09x) Testing distribution - ok. (99.999943 confidence) Window at 6 - Testing collisions - Expected 128.00, actual 141.00 ( 1.10x) Testing distribution - ok. (99.999943 confidence) Window at 7 - Testing collisions - Expected 128.00, actual 129.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence) Window at 8 - Testing collisions - Expected 128.00, actual 122.00 ( 0.95x) Testing distribution - ok. (99.999943 confidence) Window at 9 - Testing collisions - Expected 128.00, actual 122.00 ( 0.95x) Testing distribution - ok. (99.999943 confidence) Window at 10 - Testing collisions - Expected 128.00, actual 129.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence) Window at 11 - Testing collisions - Expected 128.00, actual 118.00 ( 0.92x) Testing distribution - ok. (99.999943 confidence) Window at 12 - Testing collisions - Expected 128.00, actual 133.00 ( 1.04x) Testing distribution - ok. (99.999943 confidence) Window at 13 - Testing collisions - Expected 128.00, actual 126.00 ( 0.98x) Testing distribution - ok. (99.999943 confidence) Window at 14 - Testing collisions - Expected 128.00, actual 136.00 ( 1.06x) Testing distribution - ok. (99.999943 confidence) Window at 15 - Testing collisions - Expected 128.00, actual 121.00 ( 0.95x) Testing distribution - ok. (99.999943 confidence) Window at 16 - Testing collisions - Expected 128.00, actual 126.00 ( 0.98x) Testing distribution - ok. (99.999943 confidence) Window at 17 - Testing collisions - Expected 128.00, actual 126.00 ( 0.98x) Testing distribution - ok. (99.999943 confidence) Window at 18 - Testing collisions - Expected 128.00, actual 104.00 ( 0.81x) Testing distribution - ok. (99.999943 confidence) Window at 19 - Testing collisions - Expected 128.00, actual 128.00 ( 1.00x) Testing distribution - ok. (99.999943 confidence) Window at 20 - Testing collisions - Expected 128.00, actual 135.00 ( 1.05x) Testing distribution - ok. (99.999943 confidence) Window at 21 - Testing collisions - Expected 128.00, actual 151.00 ( 1.18x) Testing distribution - ok. (99.999943 confidence) Window at 22 - Testing collisions - Expected 128.00, actual 128.00 ( 1.00x) Testing distribution - ok. (99.999943 confidence) Window at 23 - Testing collisions - Expected 128.00, actual 128.00 ( 1.00x) Testing distribution - ok. (99.999943 confidence) Window at 24 - Testing collisions - Expected 128.00, actual 114.00 ( 0.89x) Testing distribution - ok. (99.999943 confidence) Window at 25 - Testing collisions - Expected 128.00, actual 106.00 ( 0.83x) Testing distribution - ok. (99.999943 confidence) Window at 26 - Testing collisions - Expected 128.00, actual 124.00 ( 0.97x) Testing distribution - ok. (99.999943 confidence) Window at 27 - Testing collisions - Expected 128.00, actual 139.00 ( 1.09x) Testing distribution - ok. (99.999943 confidence) Window at 28 - Testing collisions - Expected 128.00, actual 134.00 ( 1.05x) Testing distribution - ok. (99.999943 confidence) Window at 29 - Testing collisions - Expected 128.00, actual 147.00 ( 1.15x) Testing distribution - ok. (99.999943 confidence) Window at 30 - Testing collisions - Expected 128.00, actual 135.00 ( 1.05x) Testing distribution - ok. (99.999943 confidence) Window at 31 - Testing collisions - Expected 128.00, actual 146.00 ( 1.14x) Testing distribution - ok. (99.999943 confidence) Window at 32 - Testing collisions - Expected 128.00, actual 130.00 ( 1.02x) Testing distribution - ok. (99.999943 confidence) Window at 33 - Testing collisions - Expected 128.00, actual 106.00 ( 0.83x) Testing distribution - ok. (99.999943 confidence) Window at 34 - Testing collisions - Expected 128.00, actual 112.00 ( 0.88x) Testing distribution - ok. (99.999943 confidence) Window at 35 - Testing collisions - Expected 128.00, actual 125.00 ( 0.98x) Testing distribution - ok. (99.999943 confidence) Window at 36 - Testing collisions - Expected 128.00, actual 125.00 ( 0.98x) Testing distribution - ok. (99.999943 confidence) Window at 37 - Testing collisions - Expected 128.00, actual 122.00 ( 0.95x) Testing distribution - ok. (99.999943 confidence) Window at 38 - Testing collisions - Expected 128.00, actual 115.00 ( 0.90x) Testing distribution - ok. (99.999943 confidence) Window at 39 - Testing collisions - Expected 128.00, actual 117.00 ( 0.91x) Testing distribution - ok. (99.999943 confidence) Window at 40 - Testing collisions - Expected 128.00, actual 119.00 ( 0.93x) Testing distribution - ok. (99.999943 confidence) Window at 41 - Testing collisions - Expected 128.00, actual 130.00 ( 1.02x) Testing distribution - ok. (99.999943 confidence) Window at 42 - Testing collisions - Expected 128.00, actual 130.00 ( 1.02x) Testing distribution - ok. (99.999943 confidence) Window at 43 - Testing collisions - Expected 128.00, actual 133.00 ( 1.04x) Testing distribution - ok. (99.999943 confidence) Window at 44 - Testing collisions - Expected 128.00, actual 132.00 ( 1.03x) Testing distribution - ok. (99.999943 confidence) Window at 45 - Testing collisions - Expected 128.00, actual 120.00 ( 0.94x) Testing distribution - ok. (99.999943 confidence) Window at 46 - Testing collisions - Expected 128.00, actual 132.00 ( 1.03x) Testing distribution - ok. (99.999943 confidence) Window at 47 - Testing collisions - Expected 128.00, actual 130.00 ( 1.02x) Testing distribution - ok. (99.999943 confidence) Window at 48 - Testing collisions - Expected 128.00, actual 134.00 ( 1.05x) Testing distribution - ok. (99.999943 confidence) Window at 49 - Testing collisions - Expected 128.00, actual 137.00 ( 1.07x) Testing distribution - ok. (99.999943 confidence) Window at 50 - Testing collisions - Expected 128.00, actual 140.00 ( 1.09x) Testing distribution - ok. (99.999943 confidence) Window at 51 - Testing collisions - Expected 128.00, actual 125.00 ( 0.98x) Testing distribution - ok. (99.999943 confidence) Window at 52 - Testing collisions - Expected 128.00, actual 120.00 ( 0.94x) Testing distribution - ok. (99.999943 confidence) Window at 53 - Testing collisions - Expected 128.00, actual 111.00 ( 0.87x) Testing distribution - ok. (99.999943 confidence) Window at 54 - Testing collisions - Expected 128.00, actual 120.00 ( 0.94x) Testing distribution - ok. (99.999943 confidence) Window at 55 - Testing collisions - Expected 128.00, actual 115.00 ( 0.90x) Testing distribution - ok. (99.999943 confidence) Window at 56 - Testing collisions - Expected 128.00, actual 117.00 ( 0.91x) Testing distribution - ok. (99.999943 confidence) Window at 57 - Testing collisions - Expected 128.00, actual 123.00 ( 0.96x) Testing distribution - ok. (99.999943 confidence) Window at 58 - Testing collisions - Expected 128.00, actual 123.00 ( 0.96x) Testing distribution - ok. (99.999943 confidence) Window at 59 - Testing collisions - Expected 128.00, actual 141.00 ( 1.10x) Testing distribution - ok. (99.999943 confidence) Window at 60 - Testing collisions - Expected 128.00, actual 132.00 ( 1.03x) Testing distribution - ok. (99.999943 confidence) Window at 61 - Testing collisions - Expected 128.00, actual 136.00 ( 1.06x) Testing distribution - ok. (99.999943 confidence) Window at 62 - Testing collisions - Expected 128.00, actual 145.00 ( 1.13x) Testing distribution - ok. (99.999943 confidence) Window at 63 - Testing collisions - Expected 128.00, actual 139.00 ( 1.09x) Testing distribution - ok. (99.999943 confidence) Window at 64 - Testing collisions - Expected 128.00, actual 147.00 ( 1.15x) Testing distribution - ok. (99.999943 confidence)
This tests various simple string keys of specific forms at different lengths and ensures they do not produce excessive collisions or bad distributions.
[[[ Keyset 'Text' Tests ]]] - BeagleHash_32_112 Keyset 'Text' - keys of form "Foo[XXXX]Bar" - 14776336 keys Testing collisions - Expected 25418.13, actual 25273.00 ( 0.99x) Testing distribution - ok. (99.999943 confidence) Keyset 'Text' - keys of form "FooBar[XXXX]" - 14776336 keys Testing collisions - Expected 25418.13, actual 25079.00 ( 0.99x) Testing distribution - ok. (99.999943 confidence) Keyset 'Text' - keys of form "[XXXX]FooBar" - 14776336 keys Testing collisions - Expected 25418.13, actual 25330.00 ( 1.00x) Testing distribution - ok. (99.999943 confidence)
Tests keys consisting of only the null byte of various lengths.
[[[ Keyset 'Zeroes' Tests ]]] - BeagleHash_32_112 Keyset 'Zeroes' - 262144 keys Testing collisions - Expected 8.00, actual 8.00 ( 1.00x) Testing distribution - ok. (99.999943 confidence)
Tests hashing the same key with many different and unique seeds and then ensures that the result has a good distribution, and collision rate.
[[[ Keyset 'Seed' Tests ]]] - BeagleHash_32_112 Keyset 'Seed' - 2000000 seeds, key length 43 Key "The quick brown fox jumps over the lazy dog" Testing collisions - Expected 465.66, actual 452.00 ( 0.97x) Testing distribution - ok. (99.999943 confidence) Keyset 'Seed' - 2000000 seeds, key length 0 Key "" Testing collisions - Expected 465.66, actual 479.00 ( 1.03x) Testing distribution - ok. (99.999943 confidence) Keyset 'Seed' - 2000000 seeds, key length 17 Key "00101100110101101" Testing collisions - Expected 465.66, actual 471.00 ( 1.01x) Testing distribution - ok. (99.999943 confidence) Keyset 'Seed' - 2000000 seeds, key length 60 Key "abcbcddbdebdcaaabaaababaaabacbeedbabseeeeeeeesssssseeeewwwww" Testing collisions - Expected 465.66, actual 388.00 ( 0.83x) Testing distribution - ok. (99.999943 confidence)
Similar to the Zeros test, this verifies that hashing keys of ever longer sequences of 0xFF bytes does not produce excess collisions and produces good distributions.
[[[ Keyset 'Effs' Tests ]]] - BeagleHash_32_112 Keyset 'Effs' - 262144 keys Testing collisions - Expected 8.00, actual 6.00 ( 0.75x) Testing distribution - ok. (99.999943 confidence)
These test that for a given set of keys the results produce the expected number of collisions. For instance with 262144 keys a 32 bit hash should produce about 8 collisions. The test will fail if the actual count exceeds double that of expected. This is not very sensitive, and my be adjusted later.
This checks that the hashes produce reasonable distributions.
XXX: Document exact rules.
Where possible I have changed smhasher to use the g-test for determining if a distribution is non-random. The test is a more accurate version of the chi-square test and can be used to calculate the probability that the distribution of N items into M buckets is "random":
or in pseudo code:
g += v * log(v/(n/m))
for each non-zero v in buckets_array
The g-value follows a chi-squared distribution with the same number of degrees-of-freedom, so any function that can convert a chi-square value to a probability can be used with the g-test. We use:
1.0 - gsl_sf_gamma_inc_Q( ( double(m) - 1.0) / 2.0, g )
from the GNU scientific library.
Wikipedia has more info on the G-Test and the Chi-Squared Distribution.
Note that the standard C log() function suffers some interesting and subtle cancellation errors when its argument is very close to and above 1, so the actual code uses log1p() when v > n/m.
The distribution tests have always used a "score" to determine if the distribution was good. I did not understand the old score, and found it produced weird results, so I replaced it with something that seemed similar but better known to me.
The following assumes we are hashing /n/ items into /m/ buckets.
The old score was
which in pseudo-code is
sum_sq += v * v
for v in buckets_array
old_score = 1.0 - ( ( ( n * n ) - 1.0 ) / ( sum_sq - n ) / m )
The new score is
which in pseudo-code is
qs_sum += ( v * ( v + 1.0 ) ) / 2.0
for v in buckets_array
quality_score = qs_sum / ( ( n / ( 2.0 * m ) ) *
( n + ( 2.0 * m ) - 1.0 ) )
score = abs( 1.0 - quality_score )
The quality score formula is from the Red Dragon book. A good hash function should have a quality score of close to one, with values between 0.95 to 1.05 being normal. In theory having a lower quality score is better, however excessively low values indicate non-random behavior that probably indicates some other weakness. Therefore our tests use the distance from 1 instead, and consider anything higher than 0.01 to be a failure.
Further discussion on hash functions and quality scores can be found here (along with all kinds of other valuable information).