Skip to content

Commit

Permalink
CodeQL fixes (#38)
Browse files Browse the repository at this point in the history
  • Loading branch information
marvinfriede authored Jan 3, 2024
1 parent 7d6a8c2 commit 915d582
Show file tree
Hide file tree
Showing 4 changed files with 260 additions and 261 deletions.
258 changes: 258 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,258 @@
# Torch Autodiff for DFT-D4

<table>
<tr>
<td>Compatibility:</td>
<td>
<img src="https://img.shields.io/badge/Python-3.8%20|%203.9%20|%203.10%20|%203.11-blue.svg" alt="Python Versions"/>
<img src="https://img.shields.io/badge/PyTorch-%3E=1.11.0-blue.svg" alt="PyTorch Versions"/>
</td>
</tr>
<tr>
<td>Availability:</td>
<td>
<a href="https://github.com/dftd4/tad-dftd4/releases/latest">
<img src="https://img.shields.io/github/v/release/dftd4/tad-dftd4?color=orange" alt="Release"/>
</a>
<a href="https://pypi.org/project/tad-dftd4/">
<img src="https://img.shields.io/pypi/v/tad-dftd4?color=orange" alt="PyPI"/>
</a>
<a href="https://www.gnu.org/licenses/lgpl-3.0">
<img src="https://img.shields.io/badge/License-LGPL_v3-orange.svg" alt="LGPL-3.0"/>
</a>
</td>
</tr>
<tr>
<td>Status:</td>
<td>
<a href="https://github.com/dftd4/tad-dftd4/actions/workflows/python.yaml">
<img src="https://github.com/dftd4/tad-dftd4/actions/workflows/python.yaml/badge.svg" alt="Test Status"/>
</a>
<a href="https://github.com/dftd4/tad-dftd4/actions/workflows/release.yaml">
<img src="https://github.com/dftd4/tad-dftd4/actions/workflows/release.yaml/badge.svg" alt="Build Status"/>
</a>
<a href="https://tad-dftd4.readthedocs.io">
<img src="https://readthedocs.org/projects/tad-dftd4/badge/?version=latest" alt="Documentation Status"/>
</a>
<a href="https://results.pre-commit.ci/latest/github/dftd4/tad-dftd4/main">
<img src="https://results.pre-commit.ci/badge/github/dftd4/tad-dftd4/main.svg" alt="pre-commit.ci Status"/>
</a>
<a href="https://codecov.io/gh/dftd4/tad-dftd4">
<img src="https://codecov.io/gh/dftd4/tad-dftd4/branch/main/graph/badge.svg?token=OGJJnZ6t4G" alt="Coverage"/>
</a>
</td>
</tr>
</table>

<br>

Implementation of the DFT-D4 dispersion model in PyTorch. This module allows to process a single structure or a batch of structures for the calculation of atom-resolved dispersion energies.

For details on the D4 dispersion model, see:

- E. Caldeweyher, C. Bannwarth and S. Grimme, *J. Chem. Phys.*, 2017, 147, 034112. [DOI: 10.1063/1.4993215](https://dx.doi.org/10.1063/1.4993215)
- E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, *J. Chem. Phys.*, 2019, 150, 154122. [DOI: 10.1063/1.5090222](https://dx.doi.org/10.1063/1.5090222)
- E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, *Phys. Chem. Chem. Phys.*, 2020, 22, 8499-8512. [DOI: 10.1039/D0CP00502A](https://doi.org/10.1039/D0CP00502A)

For alternative implementations, also check out:

- [dftd4](https://dftd4.readthedocs.io): Implementation of the DFT-D4 dispersion model in Fortran with Python bindings.
- [cpp-d4](https://github.com/dftd4/cpp-d4): Implementation of the DFT-D4 dispersion model in C++.

## Installation

### pip

*tad-dftd4* can easily be installed with ``pip``.

```bash
pip install tad-dftd4
```

### From source

This project is hosted on GitHub at [dftd4/tad-dftd4](https://github.com/dftd4/tad-dftd4).
Obtain the source by cloning the repository with

```bash
git clone https://github.com/dftd4/tad-dftd4
cd tad-dftd4
```

We recommend using a [conda](https://conda.io/) environment to install the package.
You can setup the environment manager using a [mambaforge](https://github.com/conda-forge/miniforge>) installer.
Install the required dependencies from the conda-forge channel.

```bash
mamba env create -n torch -f environment.yaml
mamba activate torch
```

Install this project with ``pip`` in the environment

```bash
pip install .
```

The following dependencies are required

- [numpy](https://numpy.org/)
- [tad_mctc](https://github.com/tad-mctc/tad_mctc/)
- [tad_multicharge](https://github.com/tad-mctc/tad_multicharge/)
- [torch](https://pytorch.org/)
- [pytest](https://docs.pytest.org/) (tests only)

## Development

For development, additionally install the following tools in your environment.

```bash
mamba install black covdefaults coverage mypy pre-commit pylint tox
```

With pip, add the option ``-e`` for installing in development mode, and add ``[dev]`` for the development dependencies

```bash
pip install -e .[dev]
```

The pre-commit hooks are initialized by running the following command in the root of the repository.

```bash
pre-commit install
```

For testing all Python environments, simply run `tox`.

```bash
tox
```

Note that this randomizes the order of tests but skips "large" tests. To modify this behavior, `tox` has to skip the optional *posargs*.

```bash
tox -- test
```

## Examples

The following example shows how to calculate the DFT-D4 dispersion energy for a single structure.

```python
import torch
import tad_dftd4 as d4
import tad_mctc as mctc

numbers = mctc.convert.symbol_to_number(symbols="C C C C N C S H H H H H".split())

# coordinates in Bohr
positions = torch.tensor(
[
[-2.56745685564671, -0.02509985979910, 0.00000000000000],
[-1.39177582455797, +2.27696188880014, 0.00000000000000],
[+1.27784995624894, +2.45107479759386, 0.00000000000000],
[+2.62801937615793, +0.25927727028120, 0.00000000000000],
[+1.41097033661123, -1.99890996077412, 0.00000000000000],
[-1.17186102298849, -2.34220576284180, 0.00000000000000],
[-2.39505990368378, -5.22635838332362, 0.00000000000000],
[+2.41961980455457, -3.62158019253045, 0.00000000000000],
[-2.51744374846065, +3.98181713686746, 0.00000000000000],
[+2.24269048384775, +4.24389473203647, 0.00000000000000],
[+4.66488984573956, +0.17907568006409, 0.00000000000000],
[-4.60044244782237, -0.17794734637413, 0.00000000000000],
]
)

# total charge of the system
charge = torch.tensor(0.0)

# TPSSh-D4-ATM parameters
param = {
"s6": positions.new_tensor(1.0),
"s8": positions.new_tensor(1.85897750),
"s9": positions.new_tensor(1.0),
"a1": positions.new_tensor(0.44286966),
"a2": positions.new_tensor(4.60230534),
}

energy = d4.dftd4(numbers, positions, charge, param)
torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0020841344, -0.0018971195, -0.0018107513, -0.0018305695,
# -0.0021737693, -0.0019484236, -0.0022788253, -0.0004080658,
# -0.0004261866, -0.0004199839, -0.0004280768, -0.0005108935])
```

The next example shows the calculation of dispersion energies for a batch of structures.

```python

import torch
import tad_dftd4 as d4
import tad_mctc as mctc

# S22 system 4: formamide dimer
numbers = mctc.batch.pack((
mctc.convert.symbol_to_number("C C N N H H H H H H O O".split()),
mctc.convert.symbol_to_number("C O N H H H".split()),
))

# coordinates in Bohr
positions = mctc.batch.pack((
torch.tensor([
[-3.81469488143921, +0.09993441402912, 0.00000000000000],
[+3.81469488143921, -0.09993441402912, 0.00000000000000],
[-2.66030049324036, -2.15898251533508, 0.00000000000000],
[+2.66030049324036, +2.15898251533508, 0.00000000000000],
[-0.73178529739380, -2.28237795829773, 0.00000000000000],
[-5.89039325714111, -0.02589114569128, 0.00000000000000],
[-3.71254944801331, -3.73605775833130, 0.00000000000000],
[+3.71254944801331, +3.73605775833130, 0.00000000000000],
[+0.73178529739380, +2.28237795829773, 0.00000000000000],
[+5.89039325714111, +0.02589114569128, 0.00000000000000],
[-2.74426102638245, +2.16115570068359, 0.00000000000000],
[+2.74426102638245, -2.16115570068359, 0.00000000000000],
]),
torch.tensor([
[-0.55569743203406, +1.09030425468557, 0.00000000000000],
[+0.51473634678469, +3.15152550263611, 0.00000000000000],
[+0.59869690244446, -1.16861263789477, 0.00000000000000],
[-0.45355203669134, -2.74568780438064, 0.00000000000000],
[+2.52721209544999, -1.29200800956867, 0.00000000000000],
[-2.63139587595376, +0.96447869452240, 0.00000000000000],
]),
))

# total charge of both system
charge = torch.tensor([0.0, 0.0])

# TPSSh-D4-ATM parameters
param = {
"s6": positions.new_tensor(1.0),
"s8": positions.new_tensor(1.85897750),
"s9": positions.new_tensor(1.0),
"a1": positions.new_tensor(0.44286966),
"a2": positions.new_tensor(4.60230534),
}

# calculate dispersion energy in Hartree
energy = torch.sum(d4.dftd4(numbers, positions, charge, param), -1)
torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0088341432, -0.0027013607])
print(energy[0] - 2*energy[1])
# tensor(-0.0034314217)
```

## Contributing

This is a volunteer open source projects and contributions are always welcome.
Please, take a moment to read the [contributing guidelines](CONTRIBUTING.md).

## License

This project is free software: you can redistribute it and/or modify it under the terms of the Lesser GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This project is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the Lesser GNU General Public License for more details.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Lesser GNU General Public license, shall be licensed as above, without any additional terms or conditions.
Loading

0 comments on commit 915d582

Please sign in to comment.