-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #59 from dkedar7/docs
New examples
- Loading branch information
Showing
7 changed files
with
7,715 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"[](https://githubtocolab.com/dkedar7/fast_dash/blob/docs/docs/Examples/06_choropleth_maps.ipynb)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"This notebook is optimized to run in Google Colab." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"import plotly.graph_objects as go\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"from urllib.request import urlopen\n", | ||
"import json\n", | ||
"\n", | ||
"from fast_dash import fastdash, Graph" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Counties sample data\n", | ||
"with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:\n", | ||
" counties = json.load(response)\n", | ||
"\n", | ||
"counties_df = pd.read_csv(\"https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16.csv\", dtype={\"fips\": str})\n", | ||
"\n", | ||
"# US Ag exports sample data\n", | ||
"us_ag_exports_df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_us_ag_exports.csv')\n", | ||
"\n", | ||
"for col in us_ag_exports_df.columns:\n", | ||
" us_ag_exports_df[col] = us_ag_exports_df[col].astype(str)\n", | ||
"\n", | ||
"us_ag_exports_df['text'] = us_ag_exports_df['state'] + '<br>' + \\\n", | ||
" 'Beef ' + us_ag_exports_df['beef'] + ' Dairy ' + us_ag_exports_df['dairy'] + '<br>' + \\\n", | ||
" 'Fruits ' + us_ag_exports_df['total fruits'] + ' Veggies ' + us_ag_exports_df['total veggies'] + '<br>' + \\\n", | ||
" 'Wheat ' + us_ag_exports_df['wheat'] + ' Corn ' + us_ag_exports_df['corn']" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"WARNING:root:Parsing function docstring is still an experimental feature. To reduce uncertainty, consider setting `about` to `False`.\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"\n", | ||
" <iframe\n", | ||
" width=\"100%\"\n", | ||
" height=\"650\"\n", | ||
" src=\"http://127.0.0.1:8080/\"\n", | ||
" frameborder=\"0\"\n", | ||
" allowfullscreen\n", | ||
" \n", | ||
" ></iframe>\n", | ||
" " | ||
], | ||
"text/plain": [ | ||
"<IPython.lib.display.IFrame at 0x1de2282eca0>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"@fastdash(theme=\"flatly\")\n", | ||
"def visualize_states_and_counties(a: int) -> (Graph, Graph):\n", | ||
" \"\"\"\n", | ||
" Fast Dash allows quick and easy visualization of various geographies.\\\n", | ||
" This application plots states and counties using two differnent basemaps.\\\n", | ||
" Reference: https://plotly.com/python/mapbox-county-choropleth/.\n", | ||
" \"\"\"\n", | ||
"\n", | ||
" # Plotly-native graph map\n", | ||
" fig = go.Figure(data=go.Choropleth(\n", | ||
" locations=us_ag_exports_df['code'],\n", | ||
" z=us_ag_exports_df['total exports'].astype(float),\n", | ||
" locationmode='USA-states',\n", | ||
" colorscale='Reds',\n", | ||
" autocolorscale=False,\n", | ||
" text=us_ag_exports_df['text'], # hover text\n", | ||
" marker_line_color='white', # line markers between states\n", | ||
" colorbar_title=\"Millions USD\"\n", | ||
" ))\n", | ||
"\n", | ||
" fig.update_layout(\n", | ||
" title_text='2011 US Agriculture Exports by State<br>(Hover for breakdown)',\n", | ||
" geo = dict(\n", | ||
" scope='usa',\n", | ||
" projection=go.layout.geo.Projection(type = 'albers usa'),\n", | ||
" showlakes=True, # lakes\n", | ||
" lakecolor='rgb(255, 255, 255)'),\n", | ||
" )\n", | ||
" \n", | ||
" plotly_express = fig\n", | ||
"\n", | ||
" # Mapbox graph map\n", | ||
" fig = go.Figure(go.Choroplethmapbox(geojson=counties, locations=counties_df.fips, z=counties_df.unemp,\n", | ||
" colorscale=\"Viridis\", zmin=0, zmax=12, marker_line_width=0))\n", | ||
" fig.update_layout(mapbox_style=\"light\", mapbox_accesstoken=\"...\",\n", | ||
" mapbox_zoom=3, mapbox_center = {\"lat\": 37.0902, \"lon\": -95.7129})\n", | ||
" fig.update_layout(margin={\"r\":0,\"t\":0,\"l\":0,\"b\":0})\n", | ||
" mapbox = fig\n", | ||
" return plotly_express, mapbox" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.16" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
Oops, something went wrong.