Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

New examples #59

Merged
merged 14 commits into from
Feb 8, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/Examples/05_water_indices_with_spyndex.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@
}
],
"source": [
"data = pd.read_csv(\"assets/gaul_data.csv\")"
"data = pd.read_csv(\"https://raw.githubusercontent.com/dkedar7/fast_dash/docs/docs/Examples/assets/gaul_data.csv\")"
]
},
{
Expand Down
159 changes: 159 additions & 0 deletions docs/Examples/06_choropleth_maps.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[![Open in colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/dkedar7/fast_dash/blob/docs/docs/Examples/06_choropleth_maps.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook is optimized to run in Google Colab."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import plotly.graph_objects as go\n",
"import numpy as np\n",
"\n",
"from urllib.request import urlopen\n",
"import json\n",
"\n",
"from fast_dash import fastdash, Graph"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Counties sample data\n",
"with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:\n",
" counties = json.load(response)\n",
"\n",
"counties_df = pd.read_csv(\"https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16.csv\", dtype={\"fips\": str})\n",
"\n",
"# US Ag exports sample data\n",
"us_ag_exports_df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_us_ag_exports.csv')\n",
"\n",
"for col in us_ag_exports_df.columns:\n",
" us_ag_exports_df[col] = us_ag_exports_df[col].astype(str)\n",
"\n",
"us_ag_exports_df['text'] = us_ag_exports_df['state'] + '<br>' + \\\n",
" 'Beef ' + us_ag_exports_df['beef'] + ' Dairy ' + us_ag_exports_df['dairy'] + '<br>' + \\\n",
" 'Fruits ' + us_ag_exports_df['total fruits'] + ' Veggies ' + us_ag_exports_df['total veggies'] + '<br>' + \\\n",
" 'Wheat ' + us_ag_exports_df['wheat'] + ' Corn ' + us_ag_exports_df['corn']"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Parsing function docstring is still an experimental feature. To reduce uncertainty, consider setting `about` to `False`.\n"
]
},
{
"data": {
"text/html": [
"\n",
" <iframe\n",
" width=\"100%\"\n",
" height=\"650\"\n",
" src=\"http://127.0.0.1:8080/\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" \n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.IFrame at 0x1de2282eca0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"@fastdash(theme=\"flatly\")\n",
"def visualize_states_and_counties(a: int) -> (Graph, Graph):\n",
" \"\"\"\n",
" Fast Dash allows quick and easy visualization of various geographies.\\\n",
" This application plots states and counties using two differnent basemaps.\\\n",
" Reference: https://plotly.com/python/mapbox-county-choropleth/.\n",
" \"\"\"\n",
"\n",
" # Plotly-native graph map\n",
" fig = go.Figure(data=go.Choropleth(\n",
" locations=us_ag_exports_df['code'],\n",
" z=us_ag_exports_df['total exports'].astype(float),\n",
" locationmode='USA-states',\n",
" colorscale='Reds',\n",
" autocolorscale=False,\n",
" text=us_ag_exports_df['text'], # hover text\n",
" marker_line_color='white', # line markers between states\n",
" colorbar_title=\"Millions USD\"\n",
" ))\n",
"\n",
" fig.update_layout(\n",
" title_text='2011 US Agriculture Exports by State<br>(Hover for breakdown)',\n",
" geo = dict(\n",
" scope='usa',\n",
" projection=go.layout.geo.Projection(type = 'albers usa'),\n",
" showlakes=True, # lakes\n",
" lakecolor='rgb(255, 255, 255)'),\n",
" )\n",
" \n",
" plotly_express = fig\n",
"\n",
" # Mapbox graph map\n",
" fig = go.Figure(go.Choroplethmapbox(geojson=counties, locations=counties_df.fips, z=counties_df.unemp,\n",
" colorscale=\"Viridis\", zmin=0, zmax=12, marker_line_width=0))\n",
" fig.update_layout(mapbox_style=\"light\", mapbox_accesstoken=\"...\",\n",
" mapbox_zoom=3, mapbox_center = {\"lat\": 37.0902, \"lon\": -95.7129})\n",
" fig.update_layout(margin={\"r\":0,\"t\":0,\"l\":0,\"b\":0})\n",
" mapbox = fig\n",
" return plotly_express, mapbox"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading
Loading