-
Notifications
You must be signed in to change notification settings - Fork 136
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add an example for borrowing numpy arrays without copying the content (…
…#38)
- Loading branch information
Showing
3 changed files
with
150 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
all: numpy_dlpack.c | ||
gcc -I../../include -shared -o libmain.so -fPIC numpy_dlpack.c |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import gc | ||
import ctypes | ||
|
||
libmain = ctypes.cdll.LoadLibrary("libmain.so") | ||
|
||
class DLContext(ctypes.Structure): | ||
_fields_ = [("device_type", ctypes.c_int), | ||
("device_id", ctypes.c_int)] | ||
|
||
class DLDataType(ctypes.Structure): | ||
_fields_ = [("type_code", ctypes.c_uint8), | ||
("bits", ctypes.c_uint8), | ||
("lanes", ctypes.c_uint16)] | ||
TYPE_MAP = { | ||
"bool": (1, 1, 1), | ||
"int32": (0, 32, 1), | ||
"int64": (0, 64, 1), | ||
"uint32": (1, 32, 1), | ||
"uint64": (1, 64, 1), | ||
"float32": (2, 32, 1), | ||
"float64": (2, 64, 1), | ||
} | ||
|
||
class DLTensor(ctypes.Structure): | ||
_fields_ = [("data", ctypes.c_void_p), | ||
("ctx", DLContext), | ||
("ndim", ctypes.c_int), | ||
("dtype", DLDataType), | ||
("shape", ctypes.POINTER(ctypes.c_int64)), | ||
("strides", ctypes.POINTER(ctypes.c_int64)), | ||
("byte_offset", ctypes.c_uint64)] | ||
|
||
class DLManagedTensor(ctypes.Structure): | ||
pass | ||
|
||
DLManagedTensorHandle = ctypes.POINTER(DLManagedTensor) | ||
|
||
DeleterFunc = ctypes.CFUNCTYPE(None, DLManagedTensorHandle) | ||
|
||
DLManagedTensor._fields_ = [("dl_tensor", DLTensor), | ||
("manager_ctx", ctypes.c_void_p), | ||
("deleter", DeleterFunc)] | ||
|
||
def display(array): | ||
print("data =", hex(array.ctypes.data_as(ctypes.c_void_p).value)) | ||
print("dtype =", array.dtype) | ||
print("ndim =", array.ndim) | ||
print("shape =", array.shape) | ||
print("strides =", array.strides) | ||
|
||
def make_manager_ctx(obj): | ||
pyobj = ctypes.py_object(obj) | ||
void_p = ctypes.c_void_p.from_buffer(pyobj) | ||
ctypes.pythonapi.Py_IncRef(pyobj) | ||
return void_p | ||
|
||
# N.B.: In practice, one should ensure that this function | ||
# is not destructed before the numpy array is destructed. | ||
@DeleterFunc | ||
def dl_managed_tensor_deleter(dl_managed_tensor_handle): | ||
void_p = dl_managed_tensor_handle.contents.manager_ctx | ||
pyobj = ctypes.cast(void_p, ctypes.py_object) | ||
print("Deleting:") | ||
display(pyobj.value) | ||
ctypes.pythonapi.Py_DecRef(pyobj) | ||
print("Done") | ||
|
||
def make_dl_tensor(array): | ||
# You may check array.flags here, e.g. array.flags['C_CONTIGUOUS'] | ||
ndim = array.ndim | ||
dl_tensor = DLTensor() | ||
dl_tensor.data = array.ctypes.data_as(ctypes.c_void_p) | ||
dl_tensor.ctx = DLContext(1, 0) | ||
dl_tensor.ndim = array.ndim | ||
dl_tensor.dtype = DLDataType.TYPE_MAP[str(array.dtype)] | ||
# For 0-dim ndarrays, strides and shape will be NULL | ||
dl_tensor.shape = array.ctypes.shape_as(ctypes.c_int64) | ||
dl_tensor.strides = array.ctypes.strides_as(ctypes.c_int64) | ||
dl_tensor.byte_offset = 0 | ||
return dl_tensor | ||
|
||
def main(): | ||
array = np.random.rand(3, 1, 30).astype("float32") | ||
print("Created:") | ||
display(array) | ||
c_obj = DLManagedTensor() | ||
c_obj.dl_tensor = make_dl_tensor(array) | ||
c_obj.manager_ctx = make_manager_ctx(array) | ||
c_obj.deleter = dl_managed_tensor_deleter | ||
print("-------------------------") | ||
del array | ||
gc.collect() | ||
libmain.Give(c_obj) | ||
print("-------------------------") | ||
del c_obj | ||
gc.collect() | ||
libmain.Finalize() | ||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
#include <stdio.h> | ||
#include <dlpack/dlpack.h> | ||
|
||
DLManagedTensor given; | ||
|
||
void display(DLManagedTensor a) { | ||
puts("On C side:"); | ||
int i; | ||
int ndim = a.dl_tensor.ndim; | ||
printf("data = %p\n", a.dl_tensor.data); | ||
printf("ctx = (device_type = %d, device_id = %d)\n", | ||
(int) a.dl_tensor.ctx.device_type, | ||
(int) a.dl_tensor.ctx.device_id); | ||
printf("dtype = (code = %d, bits = %d, lanes = %d)\n", | ||
(int) a.dl_tensor.dtype.code, | ||
(int) a.dl_tensor.dtype.bits, | ||
(int) a.dl_tensor.dtype.lanes); | ||
printf("ndim = %d\n", | ||
(int) a.dl_tensor.ndim); | ||
printf("shape = ("); | ||
for (i = 0; i < ndim; ++i) { | ||
if (i != 0) { | ||
printf(", "); | ||
} | ||
printf("%d", (int) a.dl_tensor.shape[i]); | ||
} | ||
printf(")\n"); | ||
printf("strides = ("); | ||
for (i = 0; i < ndim; ++i) { | ||
if (i != 0) { | ||
printf(", "); | ||
} | ||
printf("%d", (int) a.dl_tensor.strides[i]); | ||
} | ||
printf(")\n"); | ||
} | ||
|
||
void Give(DLManagedTensor dl_managed_tensor) { | ||
display(dl_managed_tensor); | ||
given = dl_managed_tensor; | ||
} | ||
|
||
void Finalize() { | ||
given.deleter(&given); | ||
} |