Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[skl] Enable cat feature support without specifying tree method. #9353

Merged
merged 2 commits into from
Jul 3, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions python-package/xgboost/sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -935,8 +935,7 @@ def _duplicated(parameter: str) -> None:
callbacks = self.callbacks if self.callbacks is not None else callbacks

tree_method = params.get("tree_method", None)
cat_support = {"gpu_hist", "approx", "hist"}
if self.enable_categorical and tree_method not in cat_support:
if self.enable_categorical and tree_method == "exact":
raise ValueError(
"Experimental support for categorical data is not implemented for"
" current tree method yet."
Expand Down
3 changes: 1 addition & 2 deletions tests/python/test_with_sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -1390,7 +1390,6 @@ def test_categorical():
X, y = tm.make_categorical(n_samples=32, n_features=2, n_categories=3, onehot=False)
ft = ["c"] * X.shape[1]
reg = xgb.XGBRegressor(
tree_method="hist",
feature_types=ft,
max_cat_to_onehot=1,
enable_categorical=True,
Expand All @@ -1409,7 +1408,7 @@ def test_categorical():
onehot, y = tm.make_categorical(
n_samples=32, n_features=2, n_categories=3, onehot=True
)
reg = xgb.XGBRegressor(tree_method="hist")
reg = xgb.XGBRegressor()
reg.fit(onehot, y, eval_set=[(onehot, y)])
from_enc = reg.evals_result()["validation_0"]["rmse"]
predt_enc = reg.predict(onehot)
Expand Down
6 changes: 3 additions & 3 deletions tests/test_distributed/test_with_dask/test_with_dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -308,7 +308,7 @@ def test_dask_sparse(client: "Client") -> None:


def run_categorical(client: "Client", tree_method: str, X, X_onehot, y) -> None:
parameters = {"tree_method": tree_method, "max_cat_to_onehot": 9999} # force onehot
parameters = {"tree_method": tree_method, "max_cat_to_onehot": 9999} # force onehot
rounds = 10
m = xgb.dask.DaskDMatrix(client, X_onehot, y, enable_categorical=True)
by_etl_results = xgb.dask.train(
Expand Down Expand Up @@ -364,9 +364,9 @@ def check_model_output(model: xgb.dask.Booster) -> None:
check_model_output(reg.get_booster())

reg = xgb.dask.DaskXGBRegressor(
enable_categorical=True, n_estimators=10
enable_categorical=True, n_estimators=10, tree_method="exact"
)
with pytest.raises(ValueError):
with pytest.raises(ValueError, match="categorical data"):
reg.fit(X, y)
# check partition based
reg = xgb.dask.DaskXGBRegressor(
Expand Down