Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Small fixes and more unit tests #3

Merged
merged 3 commits into from
Oct 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -8,4 +8,5 @@ wandb/
site/
*.DS_Store
__pycache__/
*.psd
*.psd
.coverage
32 changes: 24 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
[![PyPI - Version](https://img.shields.io/pypi/v/ldct-benchmark?color=blue&cacheSeconds=!%5BPyPI%20-%20Version%5D(https%3A%2F%2Fimg.shields.io%2Fpypi%2Fv%2Fldct-benchmark))](https://pypi.org/project/ldct-benchmark/)
![License](https://img.shields.io/badge/MIT-blue?label=License)
[![arXiv](https://img.shields.io/badge/2401.04661-red?label=arXiv)](https://arxiv.org/abs/2401.04661)
[![DOI](https://img.shields.io/badge/10.1002%2Fmp.17379-red?label=MedPhys)](https://doi.org/10.1002/mp.17379)

[GitHub](https://github.com/eeulig/ldct-benchmark) | [Documentation](https://eeulig.github.io/ldct-benchmark/)

Expand Down Expand Up @@ -49,15 +50,30 @@ We welcome contributions of novel denoising algorithms. For details on how to do

## Reference
If you find this project useful for your work, please cite our [arXiv preprint](https://arxiv.org/abs/2401.04661):
> Elias Eulig, Björn Ommer, & Marc Kachelrieß (2024). Benchmarking Deep Learning-Based Low Dose CT Image Denoising Algorithms. arXiv, 2401.04661.
> Elias Eulig, Björn Ommer, & Marc Kachelrieß (2024). Benchmarking Deep Learning-Based Low-Dose CT Image Denoising Algorithms. arXiv, 2401.04661.

```bibtex
@article{eulig2024ldctbench,
title={Benchmarking Deep Learning-Based Low Dose CT Image Denoising Algorithms},
author={Elias Eulig and Björn Ommer and Marc Kachelrieß},
year={2024},
eprint={2401.04661},
archivePrefix={arXiv},
primaryClass={physics.med-ph}
@article{ldctbench-arxiv,
title = {Benchmarking Deep Learning-Based Low-Dose CT Image Denoising Algorithms},
author = {Elias Eulig and Björn Ommer and Marc Kachelrieß},
year = {2024},
eprint = {2401.04661},
archivePrefix = {arXiv},
primaryClass = {physics.med-ph}
}
```

or [Medical Physics paper](https://doi.org/10.1002/mp.17379):
> Elias Eulig, Björn Ommer, & Marc Kachelrieß (2024). Benchmarking Deep Learning-Based Low-Dose CT Image Denoising Algorithms. Medical Physics.

```bibtex
@article{ldctbench-medphys,
title = {Benchmarking deep learning-based low-dose CT image denoising algorithms},
author = {Eulig, Elias and Ommer, Björn and Kachelrieß, Marc},
journal = {Medical Physics},
year = {2024},
doi = {https://doi.org/10.1002/mp.17379},
url = {https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.17379},
eprint = {https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/mp.17379},
}
```
33 changes: 24 additions & 9 deletions README_PYPI.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,15 +36,30 @@ We welcome contributions of novel denoising algorithms. For details on how to do

## Reference
If you find this project useful for your work, please cite our [arXiv preprint](https://arxiv.org/abs/2401.04661):
> Elias Eulig, Björn Ommer, & Marc Kachelrieß (2024). Benchmarking Deep Learning-Based Low Dose CT Image Denoising Algorithms. arXiv, 2401.04661.
> Elias Eulig, Björn Ommer, & Marc Kachelrieß (2024). Benchmarking Deep Learning-Based Low-Dose CT Image Denoising Algorithms. arXiv, 2401.04661.

```bibtex
@article{eulig2024ldctbench,
title={Benchmarking Deep Learning-Based Low Dose CT Image Denoising Algorithms},
author={Elias Eulig and Björn Ommer and Marc Kachelrieß},
year={2024},
eprint={2401.04661},
archivePrefix={arXiv},
primaryClass={physics.med-ph}
@article{ldctbench-arxiv,
title = {Benchmarking Deep Learning-Based Low-Dose CT Image Denoising Algorithms},
author = {Elias Eulig and Björn Ommer and Marc Kachelrieß},
year = {2024},
eprint = {2401.04661},
archivePrefix = {arXiv},
primaryClass = {physics.med-ph}
}
```
```

or [Medical Physics paper](https://doi.org/10.1002/mp.17379):
> Elias Eulig, Björn Ommer, & Marc Kachelrieß (2024). Benchmarking Deep Learning-Based Low-Dose CT Image Denoising Algorithms. Medical Physics.

```bibtex
@article{ldctbench-medphys,
title = {Benchmarking deep learning-based low-dose CT image denoising algorithms},
author = {Eulig, Elias and Ommer, Björn and Kachelrieß, Marc},
journal = {Medical Physics},
year = {2024},
doi = {https://doi.org/10.1002/mp.17379},
url = {https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.17379},
eprint = {https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/mp.17379},
}
```
33 changes: 24 additions & 9 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,16 +38,31 @@ Therefore, the **aim** of this project is to
We welcome contributions of novel denoising algorithms. For details on how to do so, please check out our [contributing guide](https://github.com/eeulig/ldct-benchmark/blob/main/CONTRIBUTING.md){:target="_blank"} or reach out to [me](mailto:[email protected]).

## Reference
If you find this project useful for your work, please cite our [arXiv preprint](https://arxiv.org/abs/2401.04661){:target="_blank"}:
> Elias Eulig, Björn Ommer, & Marc Kachelrieß (2024). Benchmarking Deep Learning-Based Low Dose CT Image Denoising Algorithms. arXiv, 2401.04661.
If you find this project useful for your work, please cite our [arXiv preprint](https://arxiv.org/abs/2401.04661):
> Elias Eulig, Björn Ommer, & Marc Kachelrieß (2024). Benchmarking Deep Learning-Based Low-Dose CT Image Denoising Algorithms. arXiv, 2401.04661.

```bibtex
@article{eulig2024ldctbench,
title={Benchmarking Deep Learning-Based Low Dose CT Image Denoising Algorithms},
author={Elias Eulig and Björn Ommer and Marc Kachelrieß},
year={2024},
eprint={2401.04661},
archivePrefix={arXiv},
primaryClass={physics.med-ph}
@article{ldctbench-arxiv,
title = {Benchmarking Deep Learning-Based Low-Dose CT Image Denoising Algorithms},
author = {Elias Eulig and Björn Ommer and Marc Kachelrieß},
year = {2024},
eprint = {2401.04661},
archivePrefix = {arXiv},
primaryClass = {physics.med-ph}
}
```

or [Medical Physics paper](https://doi.org/10.1002/mp.17379):
> Elias Eulig, Björn Ommer, & Marc Kachelrieß (2024). Benchmarking Deep Learning-Based Low-Dose CT Image Denoising Algorithms. Medical Physics.

```bibtex
@article{ldctbench-medphys,
title = {Benchmarking deep learning-based low-dose CT image denoising algorithms},
author = {Eulig, Elias and Ommer, Björn and Kachelrieß, Marc},
journal = {Medical Physics},
year = {2024},
doi = {https://doi.org/10.1002/mp.17379},
url = {https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.17379},
eprint = {https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/mp.17379},
}
```
8 changes: 4 additions & 4 deletions ldctbench/data/LDCTMayo.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,10 +213,10 @@ def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
# Load image
sample = self.samples[idx]
f_name = self._idx2filename(sample["slice"], sample["n_slices"])
x = pydicom.read_file(
x = pydicom.filereader.dcmread(
os.path.join(self.path, sample["input"][2:], f_name)
).pixel_array.astype("float32")
y = pydicom.read_file(
y = pydicom.filereader.dcmread(
os.path.join(self.path, sample["target"][2:], f_name)
).pixel_array.astype("float32")

Expand All @@ -242,10 +242,10 @@ def __init__(self, datafolder, data_norm):
)
for s in range(patient_dict["n_slices"]):
f_name = self._idx2filename(s + 1, patient_dict["n_slices"])
x = pydicom.read_file(
x = pydicom.filereader.dcmread(
os.path.join(datafolder, patient_dict["input"][2:], f_name)
).pixel_array.astype("float32")
y = pydicom.read_file(
y = pydicom.filereader.dcmread(
os.path.join(datafolder, patient_dict["target"][2:], f_name)
).pixel_array.astype("float32")
self.samples[-1]["x"].append(x)
Expand Down
4 changes: 3 additions & 1 deletion ldctbench/data/prepare_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,9 @@


def load_dicom(path):
slices = [pydicom.read_file(os.path.join(path, s)) for s in os.listdir(path)]
slices = [
pydicom.filereader.dcmread(os.path.join(path, s)) for s in os.listdir(path)
]
slices.sort(key=lambda x: float(x.ImagePositionPatient[2]))
image = np.stack([s.pixel_array for s in slices])
return image
Expand Down
16 changes: 8 additions & 8 deletions ldctbench/hub/checkpoints.json
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
{
"resnet": {
"url": "https://my.hidrive.com/api/sharelink/download?id=p3CIkV4O",
"url": "https://downloads.eeulig.com/ldct-benchmark/resnet.pt",
"checksum": "4fe7137fe5abe7c381d746914528eaf23f061204580d8f027faf4d5eaaca6714",
"model_name": "Model",
"args": {},
Expand All @@ -11,55 +11,55 @@
"normalization": "meanstd"
},
"bilateral": {
"url": "https://my.hidrive.com/api/sharelink/download?id=YqiokoAv",
"url": "https://downloads.eeulig.com/ldct-benchmark/bilateral.pt",
"checksum": "3e0722758e31c92fd11cc8bb9f5d2e93714a885bbe21183228fbe8946e79d5ff",
"model_name": "Model",
"args": {"cuda": true},
"kwargs": {},
"normalization": "meanstd"
},
"cnn10": {
"url": "https://my.hidrive.com/api/sharelink/download?id=LGCIEJ1u",
"url": "https://downloads.eeulig.com/ldct-benchmark/cnn10.pt",
"checksum": "ee96e494c8eda02e946464df29cf43c14163e63bc4b1df6d8907ee33a1a18c3e",
"model_name": "Model",
"args": {},
"kwargs": {},
"normalization": "meanstd"
},
"dugan": {
"url": "https://my.hidrive.com/api/sharelink/download?id=ljCok94w",
"url": "https://downloads.eeulig.com/ldct-benchmark/dugan.pt",
"checksum": "c6faad8376994fe22eadc0a723f81705fda6f435f40ef0f999666e871216ac5e",
"model_name": "Model",
"args": {},
"kwargs": {"out_ch": 96},
"normalization": "meanstd"
},
"qae": {
"url": "https://my.hidrive.com/api/sharelink/download?id=5LiIE1Em",
"url": "https://downloads.eeulig.com/ldct-benchmark/qae.pt",
"checksum": "ca6ce543b476d4c3673acd2f3d1284d47d98483c41a61cc912f5214c80921363",
"model_name": "Model",
"args": {},
"kwargs": {},
"normalization": "meanstd"
},
"redcnn": {
"url": "https://my.hidrive.com/api/sharelink/download?id=2GCokzaQ",
"url": "https://downloads.eeulig.com/ldct-benchmark/redcnn.pt",
"checksum": "058ae58264a00116e5620ed88047e687c7e93c8b732bfd6d7796e76bae0c74f3",
"model_name": "Model",
"args": {},
"kwargs": {"out_ch": 96},
"normalization": "meanstd"
},
"transct": {
"url": "https://my.hidrive.com/api/sharelink/download?id=6aiIEj6Q",
"url": "https://downloads.eeulig.com/ldct-benchmark/transct.pt",
"checksum": "37b5af1cb4fdfaa0c1d67d5992a5e9c6da5b6afda59bf5274d1fe5db163f959e",
"model_name": "Model",
"args": {},
"kwargs": {},
"normalization": "meanstd"
},
"wganvgg": {
"url": "https://my.hidrive.com/api/sharelink/download?id=GHCoEb4H",
"url": "https://downloads.eeulig.com/ldct-benchmark/wganvgg.pt",
"checksum": "1ad87d16aefea99a9eeb474c33127971131cc21a07e129bf464c764cf9ca6003",
"model_name": "Model",
"args": {},
Expand Down
43 changes: 29 additions & 14 deletions ldctbench/hub/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,11 @@
from ldctbench.hub import Methods, load_model
from ldctbench.utils.test_utils import denormalize, normalize

SUPPORTED_TRANSFER_SYNTAX_UIDS = [
pydicom.uid.ExplicitVRLittleEndian,
pydicom.uid.RLELossless,
]


@torch.no_grad()
def denoise_numpy(
Expand Down Expand Up @@ -162,9 +167,12 @@ def denoise_dicom(
files = None
if os.path.isdir(dicom_path):
files = [
os.path.join(dicom_path, file)
for file in os.listdir(dicom_path)
if pydicom.misc.is_dicom(os.path.join(dicom_path, file))
os.path.join(dicom_path, item)
for item in os.listdir(dicom_path)
if (
not os.path.isdir(os.path.join(dicom_path, item))
and pydicom.misc.is_dicom(os.path.join(dicom_path, item))
)
]
elif pydicom.misc.is_dicom(dicom_path):
files = [dicom_path]
Expand All @@ -173,25 +181,24 @@ def denoise_dicom(

# Iterate over filepaths
for file in tqdm(files, desc="Denoise DICOMs", disable=disable_progress):
ds = pydicom.read_file(file)
ds = pydicom.filereader.dcmread(file)

# Training data had RescaleIntercept: -1024 HU and RescaleSlope: 1.0. raise a warning if given dicom has different values
# Training data had RescaleIntercept: -1024 HU and RescaleSlope: 1.0. Raise a warning if given dicom has different values
intercept = getattr(ds, "RescaleIntercept", None)
slope = getattr(ds, "RescaleSlope", None)
if not intercept or int(intercept) != -1024:
if intercept is None or int(intercept) != -1024:
warnings.warn(
f"Expected DICOM data to have intercept -1024 but got {intercept} instead!"
)
if not intercept or float(slope) != 1.0:
if slope is None or float(slope) != 1.0:
warnings.warn(
f"Expected DICOM data to have slope 1.0 but got {slope} instead!"
)

# Might be that this function doesn't properly handle DICOM files with compressed pixel data. Raise a warning.
if not ds.file_meta.TransferSyntaxUID == pydicom.uid.ExplicitVRLittleEndian:
ds.decompress()
warnings.warn(
f"TransferSyntaxUID (0002, 0010) must be {pydicom.uid.ExplicitVRLittleEndian} ({pydicom.uid.ExplicitVRLittleEndian.name}) but got {ds.file_meta.TransferSyntaxUID} ({ds.file_meta.TransferSyntaxUID.name}) instead! Used pydicoms .decompress()"
# Raise error if TransferSyntaxUID is not supported
if not ds.file_meta.TransferSyntaxUID in SUPPORTED_TRANSFER_SYNTAX_UIDS:
raise ValueError(
f"TransferSyntaxUID (0002, 0010) must be one of {', '.join([f'{item} ({item.name})' for item in SUPPORTED_TRANSFER_SYNTAX_UIDS])}) but got {ds.file_meta.TransferSyntaxUID} ({ds.file_meta.TransferSyntaxUID.name}) instead!"
)

# Denoise image data
Expand All @@ -208,8 +215,16 @@ def denoise_dicom(
out=x_denoised,
)

# Overwrite existing PixelData
ds.PixelData = x_denoised.astype(x.dtype).tobytes()
# Update PixelData, compressed if needed
if ds.file_meta.TransferSyntaxUID.is_compressed:
ds.compress(
ds.file_meta.TransferSyntaxUID,
x_denoised.astype(x.dtype),
generate_instance_uid=False,
)
print(f"Compressed again using {ds.file_meta.TransferSyntaxUID.name}")
else:
ds.PixelData = x_denoised.astype(x.dtype).tobytes()

# Save as a new file
new_filepath = os.path.join(savedir, os.path.basename(file))
Expand Down
6 changes: 6 additions & 0 deletions ldctbench/utils/auxiliaries.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,12 @@ def load_json(path: str):
return d


def save_json(content, path: str):
"""Save python object to json file"""
with open(path, "w") as f:
json.dump(content, f)


def dump_config(args: Namespace, path: str):
"""Save argparse.Namespace to yaml file"""
with open(os.path.join(path, "args.yaml"), "w") as outfile:
Expand Down
Loading
Loading