Skip to content

Commit

Permalink
recommendations
Browse files Browse the repository at this point in the history
  • Loading branch information
wslyvh committed Oct 26, 2024
1 parent 080c294 commit be63249
Show file tree
Hide file tree
Showing 10 changed files with 476,873 additions and 364 deletions.
475,029 changes: 475,029 additions & 0 deletions devcon-api/data/vectors/devcon-7.json

Large diffs are not rendered by default.

1,075 changes: 1,075 additions & 0 deletions devcon-api/data/vectors/dictionary.json

Large diffs are not rendered by default.

187 changes: 181 additions & 6 deletions devcon-api/src/clients/recommendation.ts
Original file line number Diff line number Diff line change
@@ -1,15 +1,44 @@
import { PrismaClient as ScheduleClient } from '@prisma/client'
import { PrismaClient as AccountClient } from '@/db/clients/account'
import { Account, PrismaClient as AccountClient } from '@/db/clients/account'
import { SERVER_CONFIG } from '@/utils/config'
import { Session } from '@/types/schedule'
import { STOPWORDS } from '@/utils/stopwords'
import { writeFileSync } from 'fs'
import dictionary from '../../data/vectors/dictionary.json'
import vectorizedSessions from '../../data/vectors/devcon-7.json'

export const WEIGHTS = {
track: 6,
expertise: 4,
audience: 4,
speaker: 6,
tag: 2,
featured: 0.1,
}

export interface VectorizedSession {
session: Session
vector: number[]
}

interface LensFollower {
export interface VectorDictionary {
tracks: string[]
speakers: string[]
tags: string[]
expertise: string[]
audiences: string[]
}

export interface LensFollower {
id: string
fullHandle: string
handle: string
address: string
ens: string
}

let cachedDictionary: VectorDictionary = dictionary

const scheduleClient = new ScheduleClient()
const accountClient = new AccountClient()

Expand Down Expand Up @@ -58,22 +87,53 @@ export async function GetRecommendedSessions(id: string, includeFeatured?: boole
return []
}

const userVector = vectorizeUser(account)
const personalizedRecommendations = GetRecommendedVectorSearch(userVector, vectorizedSessions as VectorizedSession[], 20)
const sessions = await scheduleClient.session.findMany({
where: {
AND: [
// { eventId: 'devcon-7' },
{ eventId: 'devcon-7' },
{
OR: [{ featured: true }, { speakers: { some: { id: { in: account.favorite_speakers } } } }],
OR: [
includeFeatured ? { featured: true } : {},
{ speakers: { some: { id: { in: account.favorite_speakers } } } },
{ id: { in: personalizedRecommendations.map((r) => r.id) } },
],
},
],
},
})

// Find related sessions based on account.tracks, account.tags, etc. from RelatedSessions

return sessions
}

export function GetRecommendedVectorSearch(sessionVector: number[], allSessions: VectorizedSession[], limit: number = 10): Session[] {
const similarities = allSessions
.filter((vs) => vs.vector !== sessionVector)
.map((vs) => {
const vectorSimilarity = getSimilarity(sessionVector, vs.vector)
const featuredBoost = vs.session.featured ? WEIGHTS.featured : 0
const adjustedSimilarity = vectorSimilarity + featuredBoost

return {
session: vs.session,
similarity: adjustedSimilarity,
}
})

const recommendations = similarities
.sort((a, b) => b.similarity - a.similarity)
.slice(0, limit)
.map((item) => {
return {
...item.session,
similarity: item.similarity,
}
})

return recommendations
}

export async function GetFarcasterFollowing(profileId: string, cursor?: string): Promise<any[]> {
console.log('Get Farcaster Following', profileId, cursor)

Expand Down Expand Up @@ -261,3 +321,118 @@ export async function GetLensProfileId(id: string) {
console.error('Error fetching social followers:', error)
}
}

export function buildDictionary(sessions: Session[], rebuild: boolean = false) {
if (cachedDictionary && !rebuild) return cachedDictionary

const allTracks = Array.from(new Set(sessions.map((s) => s.track))).filter((t) => !STOPWORDS.includes(t))
const allSpeakers = Array.from(new Set(sessions.flatMap((s) => s.speakers))).filter((s) => !STOPWORDS.includes(s))
const allTags = Array.from(new Set(sessions.flatMap((s) => s.tags))).filter((t) => !STOPWORDS.includes(t))
const allExpertise = Array.from(new Set(sessions.map((s) => s.expertise))).filter((e) => !STOPWORDS.includes(e))
const allAudiences = Array.from(new Set(sessions.map((s) => s.audience))).filter((a) => !STOPWORDS.includes(a))

return { tracks: allTracks, speakers: allSpeakers, tags: allTags, expertise: allExpertise, audiences: allAudiences } as VectorDictionary
}

export function vectorizeSessions(sessions: any[], limit: number = 10, saveToFile?: boolean) {
const dictionary = buildDictionary(sessions, true)
const vectorizedSessions: VectorizedSession[] = sessions.map((session) => ({
session,
vector: vectorizeSession(session, dictionary),
}))

if (saveToFile) {
writeFileSync(`data/vectors/dictionary.json`, JSON.stringify(dictionary, null, 2))
writeFileSync(`data/vectors/devcon-7.json`, JSON.stringify(vectorizedSessions, null, 2))
}

const similarities = []
for (let i = 0; i < vectorizedSessions.length; i++) {
const session = vectorizedSessions[i]
const recommendations = GetRecommendedVectorSearch(session.vector, vectorizedSessions, limit)
similarities.push(
...recommendations.map((rec) => ({
sessionId: session.session.id,
otherId: rec.id,
similarity: rec.similarity || 0,
}))
)
}

return similarities
}

export function vectorizeSession(session: Session, dictionary: VectorDictionary): number[] {
const vector = [
...dictionary.tracks.map((track) => (session.track === track ? 1 : 0)),
...dictionary.speakers.map((speaker) => (session.speakers.includes(speaker) ? 1 : 0)),
...dictionary.tags.map((tag) => (session.tags.includes(tag) ? 1 : 0)),
...dictionary.expertise.map((exp) => (session.expertise === exp ? 1 : 0)),
...dictionary.audiences.map((aud) => (session.audience === aud ? 1 : 0)),
]

return getVectorWeight(vector, dictionary)
}

export function vectorizeUser(user: Account, dic: VectorDictionary = dictionary): number[] {
const vector = [
...dictionary.tracks.map((track) => (user.tracks.includes(track) ? 1 : 0)),
...dictionary.speakers.map((speaker) => (user.favorite_speakers.includes(speaker) ? 1 : 0)),
...dictionary.tags.map((tag) => (user.tags.includes(tag) ? 1 : 0)),
...dictionary.expertise.map((exp) => (getExpertiseLevel(user?.since).includes(exp) ? 1 : 0)),
...dictionary.audiences.map((aud) => (user.roles.includes(aud) ? 1 : 0)),
]

return getVectorWeight(vector, dictionary)
}

export function getVectorWeight(vector: number[], dictionary: VectorDictionary) {
const trackLength = dictionary.tracks.length
const expertiseLength = dictionary.expertise.length
const audienceLength = dictionary.audiences.length
const speakerLength = dictionary.speakers.length
const tagLength = dictionary.tags.length

for (let i = 0; i < vector.length; i++) {
if (i < trackLength) {
vector[i] *= WEIGHTS.track
} else if (i < trackLength + expertiseLength) {
vector[i] *= WEIGHTS.expertise
} else if (i < trackLength + expertiseLength + audienceLength) {
vector[i] *= WEIGHTS.audience
} else if (i < trackLength + expertiseLength + audienceLength + speakerLength) {
vector[i] *= WEIGHTS.speaker
} else if (i < trackLength + expertiseLength + audienceLength + speakerLength + tagLength) {
vector[i] *= WEIGHTS.tag
}
}

return vector
}

export function getSimilarity(vector1: number[], vector2: number[]): number {
if (vector1.length !== vector2.length) {
throw new Error('Vectors must have the same length')
}

const dotProduct = vector1.reduce((acc, val, index) => acc + val * vector2[index], 0)
const magnitude1 = Math.sqrt(vector1.reduce((acc, val) => acc + Math.pow(val, 2), 0))
const magnitude2 = Math.sqrt(vector2.reduce((acc, val) => acc + Math.pow(val, 2), 0))

if (magnitude1 === 0 || magnitude2 === 0) {
return 0
}

return dotProduct / (magnitude1 * magnitude2)
}

export function getExpertiseLevel(since?: number | null) {
if (!since) return []

if (since >= 2023) return ['Beginner']
if (since >= 2021) return ['Beginner', 'Intermediate']
if (since >= 2019) return ['Intermediate']
if (since >= 2017) return ['Intermediate', 'Advanced']

return ['Advanced']
}
4 changes: 2 additions & 2 deletions devcon-api/src/controllers/sessions.ts
Original file line number Diff line number Diff line change
Expand Up @@ -219,13 +219,13 @@ export async function GetSessionRelated(req: Request, res: Response) {
const data = await client.relatedSession.findMany({
where: { sessionId: req.params.id },
orderBy: { similarity: 'desc' },
include: { related: true },
include: { other: true },
take: 10,
})

if (!data) return res.status(404).send({ status: 404, message: 'Not Found' })

res.status(200).send({ status: 200, message: '', data: data.map((i) => i.related) })
res.status(200).send({ status: 200, message: '', data: data.map((i) => i.other) })
}

export async function GetSessionImage(req: Request, res: Response) {
Expand Down
Binary file modified devcon-api/src/db/devcon.db
Binary file not shown.
17 changes: 15 additions & 2 deletions devcon-api/src/db/schema.prisma
Original file line number Diff line number Diff line change
Expand Up @@ -85,14 +85,27 @@ model Session {
resources_slides String?
relatedSessions RelatedSession[] @relation(name: "Related")
recommendedSessions RecommendedSession[] @relation(name: "Recommended")
}

model RelatedSession {
id Int @id @default(autoincrement())
sessionId String
vector Bytes?
related Session @relation(name: "Related", fields: [relatedId], references: [id])
relatedId String
other Session @relation(name: "Related", fields: [otherId], references: [id])
otherId String
similarity Float
}

model RecommendedSession {
id Int @id @default(autoincrement())
sessionId String
vector Bytes?
other Session @relation(name: "Recommended", fields: [otherId], references: [id])
otherId String
similarity Float
}
Loading

0 comments on commit be63249

Please sign in to comment.