Skip to content

einarhjorleifsson/mar

Repository files navigation

title author output
mar
Bjarki Þór Elvarsson and Einar Hjörleifsson
html_document
keep_md
true

The small print: Package in the making

Tidyverse connection to MRI oracle database

The dplyr-package is designed so that, in addition to working with local R-data.frames, it works with remote on-disk data stored in databases. Inbuilt functions within dplyr allow seamless connectivity with sqlite, mysql and postgresql. Due to some idiosyncrasies associated with schema as well as issues related to case-sensitivity make "default" communication with Oracle not straight forward. These as well as other convenience wrappers are taken care of in the mar-packages.

Installation

You have to do this once, or when you want to update the packages already installed on your computer:

install.packages("tidyverse")
# install.packages("devtools")
devtools::install_github("fishvice/mar",  dependencies = FALSE)

Windows users may encounter issues when installing the mar - package related to different binary modes (32 bit vs 64 bit) where the user is prompted with the following error

ERROR: loading failed for 'i386'

This issue can be bypassed by installing mar using:

devtools::install_github("fishvice/mar",  dependencies = FALSE, args='--no-multiarch')

Establish connection

library(mar)

Connection to MRI Oracle database:

con <- connect_mar()

Some (hopefully) gentle introduction


The core function in the mar-package is the tbl_mar-function. It takes two arguments, the "connection" and the name of the oracle table. E.g. to establish a connection to the table "lengdir" in the schema "fiskar" one can do:

lengdir <- tbl_mar(con, "fiskar.lengdir")

What class is lengdir?:

class(lengdir)
## [1] "tbl_dbi"  "tbl_sql"  "tbl_lazy" "tbl"

The class here is somewhat obtuse. Lets not worry about that to much. What has happened behind the scene one can realize by:

show_query(lengdir) 

Ergo we generated an object, which one part is an SQL-query. The show_query informs us how the database plans to execute the query.

The operation has not yet touched the database. It’s not until you ask for the data (e.g. by printing lengdir) that dplyr generates the SQL and requests the results from the database. Even then it only pulls down 10 rows.

lengdir
## # Source:   lazy query [?? x 10]
## # Database: OraConnection
##    synis_id tegund lengd fjoldi   kyn kynthroski sbt                 sbn  
##       <int>  <int> <dbl>  <int> <int>      <int> <dttm>              <chr>
##  1    48208      1  38.0      3    NA         NA 1996-08-21 01:00:23 FISK…
##  2    48208      1  43.0      2    NA         NA 1996-08-21 01:00:23 FISK…
##  3    48200      1  13.0      2    NA         NA 1996-08-21 01:00:23 FISK…
##  4    48200      1  38.0      1    NA         NA 1996-08-21 01:00:23 FISK…
##  5    48200      1  43.0      1    NA         NA 1996-08-21 01:00:23 FISK…
##  6    50603     28  23.0      1    NA         NA 1996-08-21 01:00:14 FISK…
##  7    50603     28  35.0      1    NA         NA 1996-08-21 01:00:14 FISK…
##  8    50604     28  20.0      2    NA         NA 1996-08-21 01:00:14 FISK…
##  9    50604     28  21.0      2    NA         NA 1996-08-21 01:00:14 FISK…
## 10    50604     28  22.0      5    NA         NA 1996-08-21 01:00:14 FISK…
## # ... with more rows, and 2 more variables: snt <dttm>, snn <chr>

Now, there are columns returned that we have little interest in (sbt:snn). Using the dplyr-verbs (functions) one can easily build upon the base query, e.g.:

lengdir %>% 
  select(synis_id, tegund, lengd, fjoldi, kyn, kynthroski)
## # Source:   lazy query [?? x 6]
## # Database: OraConnection
##    synis_id tegund lengd fjoldi   kyn kynthroski
##       <int>  <int> <dbl>  <int> <int>      <int>
##  1    48208      1  38.0      3    NA         NA
##  2    48208      1  43.0      2    NA         NA
##  3    48200      1  13.0      2    NA         NA
##  4    48200      1  38.0      1    NA         NA
##  5    48200      1  43.0      1    NA         NA
##  6    50603     28  23.0      1    NA         NA
##  7    50603     28  35.0      1    NA         NA
##  8    50604     28  20.0      2    NA         NA
##  9    50604     28  21.0      2    NA         NA
## 10    50604     28  22.0      5    NA         NA
## # ... with more rows

Now if one were only interested in one species and one station we may extend the above as:

lengdir <- 
  tbl_mar(con, "fiskar.lengdir") %>% 
  select(synis_id, tegund, lengd, fjoldi, kyn, kynthroski) %>% 
  filter(synis_id == 48489,
         tegund == 1)
show_query(lengdir)

To pull down all the results into R one uses collect(), which returns a tidyverse data.frame (tbl_df):

d <- 
  lengdir %>% 
  collect(n = Inf)
class(d)
## [1] "tbl_df"     "tbl"        "data.frame"
dim(d)
## [1] 31  6

A quick visualization of the data can be obtained via:

d %>% 
  ggplot() +
  geom_bar(aes(lengd, fjoldi), stat = "identity")

So we have the length distribution of measured cod from one sample (station). We do not however know what this sample is, because the column synis_id is just some gibberish automatically generated within Oracle. Before we deal with that, lets introduce lesa_lengdir-function that resides in the mar-package:

lesa_lengdir(con)
## # Source:   lazy query [?? x 6]
## # Database: OraConnection
##    synis_id tegund lengd fjoldi   kyn kynthroski
##       <int>  <int> <dbl>  <int> <int>      <int>
##  1    48208      1  38.0      3    NA         NA
##  2    48208      1  43.0      2    NA         NA
##  3    48200      1  13.0      2    NA         NA
##  4    48200      1  38.0      1    NA         NA
##  5    48200      1  43.0      1    NA         NA
##  6    50603     28  23.0      1    NA         NA
##  7    50603     28  35.0      1    NA         NA
##  8    50604     28  20.0      2    NA         NA
##  9    50604     28  21.0      2    NA         NA
## 10    50604     28  22.0      5    NA         NA
## # ... with more rows

Here we have same columns as above with one additional column, uppruni_lengdir. This is because the function reads from two different tables, fiskar.lengdir and fiskar.leidr_lengdir and combines them into one. Hopefully this is only an interim measure - there are plans to merge these two data tables into one (lets keep our fingers crossed).

Lets used lesa_lengdir as our starting point, this time lets ask the question how many fish by species were length measured from this yet unknown station:

d <-
  lesa_lengdir(con) %>% 
  filter(synis_id == 48489) %>% 
  group_by(tegund) %>% 
  summarise(fjoldi = sum(fjoldi)) %>% 
  arrange(fjoldi)
show_query(d)

The SQL query has now become a bunch of gibberish for some of us. But this demonstrates that in addition to select and filter the dplyr-verbs group_by, summarise and arrange are "translated" into SQL :-) To see the outcome we do:

d %>% collect(n = Inf)
## # A tibble: 7 x 2
##   tegund fjoldi
##    <int>  <dbl>
## 1      2   1.00
## 2     25   6.00
## 3     22   6.00
## 4      5  39.0 
## 5     12  49.0 
## 6     28  60.0 
## 7      1 119

Those familiar with the fiskar database know that these information are also available in the table numer. Here we can use the ``mar::lesa_numer` function:

lesa_numer(con) %>% 
  filter(synis_id == 48489)
## # Source:   lazy query [?? x 19]
## # Database: OraConnection
##    syni… tegu… fj_m… fj_k… gama… gama… fj_t…  afli fj_k… fj_v… vigt… fj_m…
##    <int> <int> <int> <int> <int> <int> <int> <dbl> <int> <int> <dbl> <int>
##  1 48489     1   119    56   209   209     0    NA    NA    NA    NA    NA
##  2 48489     2     1     1   208   208     0    NA    NA    NA    NA    NA
##  3 48489     5    39     0   209    NA     0    NA    NA    NA    NA    NA
##  4 48489    12    49     0   209    NA     0    NA    NA    NA    NA    NA
##  5 48489    22     6     0   202    NA     0    NA    NA    NA    NA    NA
##  6 48489    25     6     0   203    NA     0    NA    NA    NA    NA    NA
##  7 48489    28    60     0   209    NA     0    NA    NA    NA    NA    NA
##  8 48489    30     0     0    NA    NA    11    NA    NA    NA    NA    NA
##  9 48489    53     0     0    NA    NA     1    NA    NA    NA    NA    NA
## 10 48489    56     0     0    NA    NA     2    NA    NA    NA    NA    NA
## # ... with more rows, and 7 more variables: aths_numer <chr>,
## #   status_lengdir <int>, status_kvarnir <int>, fj_merkt <int>,
## #   fj_aldursgr <int>, kg_talning <int>, uppruni_numer <chr>
tbl_mar(con, "fiskar.numer") %>% 
  filter(synis_id == 48489) %>% 
  select(tegund, fj_maelt, fj_talid) %>% 
  arrange(fj_maelt) %>% 
  collect(n = Inf)
## # A tibble: 11 x 3
##    tegund fj_maelt fj_talid
##     <int>    <int>    <int>
##  1     85        0      123
##  2     53        0        1
##  3     30        0       11
##  4     56        0        2
##  5      2        1        0
##  6     22        6        0
##  7     25        6        0
##  8      5       39        0
##  9     12       49        0
## 10     28       60        0
## 11      1      119        0

So we get a dataframe that has more species than those obtained from lesa_lengdir. This is because the sample (station) also contained some species that were not measured, only counted.

Information about the station that corresponds to synis_id = 48489 reside in the station table:

lesa_stodvar(con) %>% 
  filter(synis_id == 48489) %>% 
  collect() %>% 
  glimpse()
## Observations: 1
## Variables: 64
## $ synis_id         <int> 48489
## $ leidangur        <chr> "TA1-91"
## $ dags             <dttm> 1991-03-06
## $ skip             <int> 1307
## $ ar               <dbl> 1991
## $ man              <dbl> 3
## $ stod             <int> 9
## $ reitur           <dbl> 669
## $ smareitur        <dbl> 4
## $ kastad_n_breidd  <dbl> 66.50917
## $ kastad_v_lengd   <dbl> -19.39383
## $ hift_n_breidd    <dbl> 66.5575
## $ hift_v_lengd     <dbl> -19.37867
## $ dypi_kastad      <int> 311
## $ dypi_hift        <int> 311
## $ veidarfaeri      <int> 73
## $ moskvastaerd     <int> 40
## $ grandarlengd     <int> 45
## $ heildarafli      <int> NA
## $ londunarhofn     <int> NA
## $ skiki            <int> NA
## $ fjardarreitur    <int> NA
## $ hnattstada       <int> -1
## $ landsyni         <int> 0
## $ aths_stodvar     <chr> NA
## $ stada_stodvar    <int> NA
## $ net_nr           <int> NA
## $ synaflokkur      <int> 30
## $ veidisvaedi      <chr> NA
## $ hitamaelir_id    <dbl> NA
## $ maelingarmenn    <chr> NA
## $ veidarfaeri_id   <dbl> NA
## $ tog_aths         <chr> NA
## $ medferd_afla     <int> NA
## $ togbyrjun        <dttm> 1991-03-06 17:12:00
## $ togendir         <dttm> 1991-03-06 18:03:00
## $ toghradi         <dbl> 3.5
## $ toglengd         <dbl> 3
## $ vir_uti          <int> 375
## $ lodrett_opnun    <dbl> 2.2
## $ tognumer         <int> 11
## $ togstefna        <int> 15
## $ larett_opnun     <dbl> NA
## $ togtimi          <int> 51
## $ togdypi_kastad   <int> NA
## $ togdypi_hift     <int> NA
## $ togdypishiti     <dbl> NA
## $ eykt             <int> NA
## $ tog_lengd        <dbl> NA
## $ dregid_fra       <chr> NA
## $ vindhradi        <int> 5
## $ vindatt          <int> 5
## $ vedur            <int> 1
## $ sky              <int> 7
## $ sjor             <int> 2
## $ botnhiti         <dbl> 4
## $ yfirbordshiti    <dbl> 3.5
## $ lofthiti         <dbl> 2.5
## $ loftvog          <int> 1006
## $ hafis            <int> 0
## $ straumstefna     <int> NA
## $ straumhradi      <dbl> NA
## $ sjondypi         <int> NA
## $ vindhradi_hnutar <int> 9

For those familiar with what is stored in fiskar.stodvar recognize that the station is most likely part of the 1991 spring survey (veidarfaeri = 73 and synaflokkur = 30 provides the best hint). What if we were to start from this end and get all the stations from the 1991 survey and also limit the number of columns returned:

smb1991 <-
  lesa_stodvar(con) %>% 
  filter(ar == 1991,
         veidarfaeri == 73,
         synaflokkur == 30) %>% 
  select(synis_id,
         lon = kastad_v_lengd,
         lat = kastad_n_breidd)

To get a quick plot of the station location we could do:

smb1991 %>% 
  collect(n = Inf) %>% 
  ggplot(aes(lon, lat)) +
  geom_polygon(data = gisland::iceland, aes(long, lat, group = group)) +
  geom_point(col = "red") +
  coord_quickmap()

Looks about right. But what if we were interested in getting the total number of fish recorded at each station? Here we need to obtain the information from fiskar.numer for the station (synis_id) in question. This we do by using left_join:

nu <- 
  tbl_mar(con, "fiskar.numer") %>% 
  group_by(synis_id) %>% 
  summarise(n = sum(fj_maelt + fj_talid))
smb1991_n <-
  smb1991 %>% 
  left_join(nu)

Again we have not done much more than generate an SQL-query and not touched the database. For those interested seeing the SQL-code do:

show_query(smb1991_n)

To turn this into action, lets execute the query, get the dataframe into R and plot the data:

smb1991_n %>% 
  collect(n = Inf) %>% 
  ggplot() +
  theme_bw() +
  geom_polygon(data = gisland::iceland, aes(long, lat, group = group), fill = "grey") +
  geom_point(aes(lon, lat, size = n), col = "red", alpha = 0.25) +
  scale_size_area(max_size = 15) +
  scale_x_continuous(NULL, NULL) +
  scale_y_continuous(NULL, NULL) +
  coord_quickmap()

Metadata

List of tables available to the user (only first 10 tables shown here):

mar_tables(con, schema = 'fiskar')
## # Source:   lazy query [?? x 7]
## # Database: OraConnection
##    owner  table_name        table… num_r… last_analyzed       tabl… comme…
##    <chr>  <chr>             <chr>   <dbl> <dttm>              <chr> <chr> 
##  1 FISKAR REITIR            NYT    2.86e³ 2017-10-12 22:00:15 TABLE <NA>  
##  2 FISKAR KVARNALOGUN       NYT    8.01e² 2017-11-17 22:00:17 TABLE Tafla…
##  3 FISKAR BEITA             NYT    2.00e⁰ 2017-06-28 11:32:50 TABLE Ekki …
##  4 FISKAR BOX               NYT    2.98e⁴ 2017-12-19 22:01:27 TABLE <NA>  
##  5 FISKAR FLOKKAR           NYT    0      2017-06-28 11:35:33 TABLE Tengt…
##  6 FISKAR FLOKKAR_SENDINGAR NYT    1.35e⁴ 2017-06-28 11:35:33 TABLE Tengt…
##  7 FISKAR G_TROSSUR         NYT    2.22e² 2017-06-28 11:47:35 TABLE Nöfn …
##  8 FISKAR G_VIKMORK         NYT    2.53e² 2017-06-28 11:47:36 TABLE Tengt…
##  9 FISKAR HAFIS             NYT    1.00e¹ 2017-06-28 11:47:42 TABLE Uppfl…
## 10 FISKAR ICES_TEGUNDIR     NYT    2.10e¹ 2017-06-28 11:48:32 TABLE ices …
## # ... with more rows

Description of the variables of a particular table (only first 10 variables shown here):

mar_fields(con,'fiskar.stodvar')
## # Source:   lazy query [?? x 4]
## # Database: OraConnection
##    owner  table_name column_name     comments                             
##    <chr>  <chr>      <chr>           <chr>                                
##  1 fiskar stodvar    synis_id        Lykilnúmer stöðvar og tengir það  sa…
##  2 fiskar stodvar    leidangur       Leiðangurs auðkenni t.d 'B9-90' vísa…
##  3 fiskar stodvar    dags            Dagsetning sýnatöku/mælidagur ef um …
##  4 fiskar stodvar    skip            Skipaskráarnúmer skips               
##  5 fiskar stodvar    stod            Númer stöðvar                        
##  6 fiskar stodvar    reitur          Tilkynningarskyldureitur sýnatöku    
##  7 fiskar stodvar    smareitur       Hólf innan tilkynningarskyldureits   
##  8 fiskar stodvar    kastad_n_breidd Staðsetning á norðurbreidd við kast …
##  9 fiskar stodvar    kastad_v_lengd  Staðsetning á vesturlengd við kast í…
## 10 fiskar stodvar    hift_n_breidd   Staðsetning á norðurbreidd við hífin…
## # ... with more rows

Something else (more advanced)


... pending

Working with stomach data


Let's look at stomach samples. Restrict our analysis to fish from the spring survey after 1992.

st <- 
  lesa_stodvar(con) %>% 
  filter(synaflokkur == 30, ar > 1992) %>% 
  select(synis_id,ar)

and only look at stomachs from cods between 40 and 80 fish

tmp <- 
  faeda_ranfiskar(con) %>% 
  filter(lengd %in% 40:80,ranfiskur == 1) %>% 
  mutate(weight = 0.01*lengd^3) %>% 
  right_join(st) %>% 
  left_join(faeda_thyngdir(con)) %>% 
  mutate(faeduhopur = nvl(faeduhopur,'Empty'),
         thyngd = nvl(thyngd,0))

Look at the average percentage of body weight capelin in the stomach is in the spring survey compared to other species

tmp %>% 
  left_join(tmp %>% 
              group_by(flokk_id) %>% 
              summarise(total = sum(thyngd))) %>% 
  select(ar,flokk_id,faeduhopur,thyngd,total,weight) %>% 
  group_by(ar,flokk_id,faeduhopur,weight) %>%  ## why do we have duplicate prey entries?
  summarise(thyngd=sum(thyngd),total=sum(total)) %>% 
  collect(n=Inf) %>% 
  ungroup() %>% 
  spread(faeduhopur,thyngd,fill=0) %>% ## this function should be availabe in the database
  select(ar,flokk_id,weight,capelin=`mall vil`,total) %>% 
  mutate(otherfood = (total - capelin)/weight,
         capelin = capelin/weight) %>%  
  select(ar,capelin,otherfood) %>% 
  gather(Prey,prop,-ar) %>% 
  group_by(ar,Prey) %>% 
  summarise(prop=mean(prop,na.rm=TRUE)) %>% 
  ggplot(aes(ar,prop,fill=Prey)) + geom_bar(stat = 'identity')

devtools::session_info()
##  setting  value                       
##  version  R version 3.4.2 (2017-09-28)
##  system   x86_64, linux-gnu           
##  ui       X11                         
##  language (EN)                        
##  collate  is_IS.UTF-8                 
##  tz       Atlantic/Reykjavik          
##  date     2018-01-05                  
## 
##  package    * version    date      
##  assertthat   0.2.0      2017-04-11
##  backports    1.1.1      2017-09-25
##  base       * 3.4.2      2017-10-30
##  bindr        0.1        2016-11-13
##  bindrcpp   * 0.2        2017-06-17
##  broom        0.4.3      2017-11-20
##  cellranger   1.1.0      2016-07-27
##  cli          1.0.0      2017-11-05
##  colorspace   1.3-2      2016-12-14
##  compiler     3.4.2      2017-10-30
##  crayon       1.3.4      2017-11-15
##  data.table   1.10.5     2017-12-01
##  datasets   * 3.4.2      2017-10-30
##  DBI        * 0.7        2017-06-18
##  dbplyr       1.2.0      2018-01-03
##  devtools     1.13.3     2017-08-02
##  digest       0.6.12     2017-01-27
##  dplyr      * 0.7.4.9000 2018-01-03
##  evaluate     0.10.1     2017-06-24
##  forcats    * 0.2.0      2017-01-23
##  foreign      0.8-69     2017-06-21
##  ggplot2    * 2.2.1.9000 2017-12-01
##  gisland      0.0.07     2017-12-12
##  glue         1.2.0      2017-10-29
##  graphics   * 3.4.2      2017-10-30
##  grDevices  * 3.4.2      2017-10-30
##  grid         3.4.2      2017-10-30
##  gtable       0.2.0      2016-02-26
##  haven        1.1.0      2017-07-09
##  hms          0.4.0      2017-11-23
##  htmltools    0.3.6      2017-04-28
##  httr         1.3.1      2017-08-20
##  jsonlite     1.5        2017-06-01
##  knitr        1.17       2017-08-10
##  labeling     0.3        2014-08-23
##  lattice      0.20-35    2017-03-25
##  lazyeval     0.2.1      2017-10-29
##  lubridate    1.7.1      2017-11-03
##  magrittr     1.5        2014-11-22
##  mar        * 0.0.3.9000 2018-01-04
##  memoise      1.1.0      2017-04-21
##  methods    * 3.4.2      2017-10-30
##  mnormt       1.5-5      2016-10-15
##  modelr       0.1.1      2017-07-24
##  munsell      0.4.3      2016-02-13
##  nlme         3.1-131    2017-02-06
##  parallel     3.4.2      2017-10-30
##  pillar       0.0.0.9000 2017-12-01
##  pkgconfig    2.0.1      2017-03-21
##  plyr         1.8.4      2016-06-08
##  psych        1.7.8      2017-09-09
##  purrr      * 0.2.4      2017-10-18
##  R6           2.2.2      2017-06-17
##  Rcpp         0.12.14    2017-11-23
##  readr      * 1.1.1      2017-05-16
##  readxl       1.0.0      2017-04-18
##  reshape2     1.4.2      2016-10-22
##  rlang        0.1.6      2017-12-21
##  rmarkdown    1.7.7      2017-11-15
##  ROracle    * 1.3-1      2016-10-26
##  rprojroot    1.2        2017-01-16
##  rstudioapi   0.7        2017-09-07
##  rvest        0.3.2      2016-06-17
##  scales       0.5.0.9000 2017-09-11
##  sp         * 1.2-5      2017-06-29
##  stats      * 3.4.2      2017-10-30
##  stringi      1.1.6      2017-11-17
##  stringr    * 1.2.0      2017-02-18
##  tibble     * 1.4.1      2017-12-25
##  tidyr      * 0.7.2      2017-10-16
##  tidyselect   0.2.3      2017-11-06
##  tidyverse  * 1.2.1      2017-11-14
##  tools        3.4.2      2017-10-30
##  utf8         1.1.1      2017-11-29
##  utils      * 3.4.2      2017-10-30
##  withr        2.1.0.9000 2017-12-01
##  xml2         1.1.1      2017-01-24
##  yaml         2.1.14     2016-11-12
##  source                                    
##  cran (@0.2.0)                             
##  CRAN (R 3.4.1)                            
##  local                                     
##  cran (@0.1)                               
##  cran (@0.2)                               
##  CRAN (R 3.4.2)                            
##  CRAN (R 3.3.1)                            
##  cran (@1.0.0)                             
##  CRAN (R 3.4.0)                            
##  local                                     
##  Github (r-lib/crayon@b5221ab)             
##  Github (Rdatatable/data.table@8bf7334)    
##  local                                     
##  CRAN (R 3.4.1)                            
##  CRAN (R 3.4.2)                            
##  CRAN (R 3.4.1)                            
##  CRAN (R 3.3.2)                            
##  Github (tidyverse/dplyr@b3837f5)          
##  CRAN (R 3.4.0)                            
##  CRAN (R 3.4.0)                            
##  CRAN (R 3.4.0)                            
##  Github (hadley/ggplot2@7b5c185)           
##  Github (einarhjorleifsson/gisland@480343a)
##  cran (@1.2.0)                             
##  local                                     
##  local                                     
##  local                                     
##  cran (@0.2.0)                             
##  CRAN (R 3.4.0)                            
##  CRAN (R 3.4.2)                            
##  CRAN (R 3.4.0)                            
##  CRAN (R 3.4.1)                            
##  CRAN (R 3.4.0)                            
##  cran (@1.17)                              
##  CRAN (R 3.2.0)                            
##  CRAN (R 3.4.0)                            
##  cran (@0.2.1)                             
##  CRAN (R 3.4.2)                            
##  CRAN (R 3.1.2)                            
##  Github (fishvice/mar@ecdb7dc)             
##  CRAN (R 3.4.0)                            
##  local                                     
##  CRAN (R 3.4.0)                            
##  CRAN (R 3.4.1)                            
##  cran (@0.4.3)                             
##  CRAN (R 3.4.0)                            
##  local                                     
##  Github (r-lib/pillar@5a082e1)             
##  cran (@2.0.1)                             
##  cran (@1.8.4)                             
##  CRAN (R 3.4.1)                            
##  CRAN (R 3.4.1)                            
##  cran (@2.2.2)                             
##  cran (@0.12.14)                           
##  CRAN (R 3.4.0)                            
##  CRAN (R 3.3.2)                            
##  cran (@1.4.2)                             
##  cran (@0.1.6)                             
##  Github (rstudio/rmarkdown@2b418a2)        
##  CRAN (R 3.4.0)                            
##  CRAN (R 3.4.0)                            
##  CRAN (R 3.4.1)                            
##  CRAN (R 3.3.2)                            
##  Github (hadley/scales@d767915)            
##  CRAN (R 3.4.0)                            
##  local                                     
##  cran (@1.1.6)                             
##  cran (@1.2.0)                             
##  cran (@1.4.1)                             
##  cran (@0.7.2)                             
##  cran (@0.2.3)                             
##  CRAN (R 3.4.2)                            
##  local                                     
##  cran (@1.1.1)                             
##  local                                     
##  Github (jimhester/withr@fe81c00)          
##  CRAN (R 3.3.2)                            
##  cran (@2.1.14)

About

Communicating with MRI database

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published