Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Vector search example #1778

Merged
merged 5 commits into from
Apr 18, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
170 changes: 170 additions & 0 deletions examples/async/vectors.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""
# Vector database example

Requirements:

$ pip install nltk sentence_transformers tqdm elasticsearch_dsl

To run the example:

$ python vectors.py "text to search"

The index will be created automatically if it does not exist. Add `--create` to
regenerate it.

The example dataset includes a selection of workplace documentation. The
following are good example queries to try out:

$ python vectors.py "work from home"
$ python vectors.py "vacation time"
$ python vectors.py "bring a bird to work"
"""

import argparse
import asyncio
import json
import os
from urllib.request import urlopen

import nltk
from sentence_transformers import SentenceTransformer
from tqdm import tqdm

from elasticsearch_dsl import (
AsyncDocument,
Date,
DenseVector,
InnerDoc,
Keyword,
Nested,
Text,
async_connections,
)

DATASET_URL = "https://raw.githubusercontent.com/elastic/elasticsearch-labs/main/datasets/workplace-documents.json"
MODEL_NAME = "all-MiniLM-L6-v2"

# initialize sentence tokenizer
nltk.download("punkt", quiet=True)


class Passage(InnerDoc):
content = Text()
embedding = DenseVector()


class WorkplaceDoc(AsyncDocument):
class Index:
name = "workplace_documents"

name = Text()
summary = Text()
content = Text()
created = Date()
updated = Date()
url = Keyword()
category = Keyword()
passages = Nested(Passage)

_model = None

@classmethod
def get_embedding_model(cls):
if cls._model is None:
cls._model = SentenceTransformer(MODEL_NAME)
return cls._model

def clean(self):
# split the content into sentences
passages = nltk.sent_tokenize(self.content)

# generate an embedding for each passage and save it as a nested document
model = self.get_embedding_model()
for passage in passages:
self.passages.append(
Passage(content=passage, embedding=list(model.encode(passage)))
)


async def create():

# create the index
await WorkplaceDoc._index.delete(ignore_unavailable=True)
await WorkplaceDoc.init()

# download the data
dataset = json.loads(urlopen(DATASET_URL).read())
miguelgrinberg marked this conversation as resolved.
Show resolved Hide resolved

# import the dataset
for data in tqdm(dataset, desc="Indexing documents..."):
doc = WorkplaceDoc(
name=data["name"],
summary=data["summary"],
content=data["content"],
created=data.get("created_on"),
updated=data.get("updated_at"),
url=data["url"],
category=data["category"],
)
await doc.save()


async def search(query):
model = WorkplaceDoc.get_embedding_model()
search = WorkplaceDoc.search().knn(
field="passages.embedding",
k=5,
num_candidates=50,
query_vector=list(model.encode(query)),
inner_hits={"size": 3},
)
async for hit in search:
print(f"Document: {hit.name} (Category: {hit.category}")
miguelgrinberg marked this conversation as resolved.
Show resolved Hide resolved
for passage in hit.meta.inner_hits.passages:
print(f" - [Score: {passage.meta.score}] {passage.content!r}")
pquentin marked this conversation as resolved.
Show resolved Hide resolved
print("")


def parse_args():
parser = argparse.ArgumentParser(description="Vector database with Elasticsearch")
parser.add_argument(
"--create", action="store_true", help="Create and populate a new index"
)
parser.add_argument("query", action="store", help="The search query")
return parser.parse_args()


async def main():
args = parse_args()

# initiate the default connection to elasticsearch
async_connections.create_connection(hosts=[os.environ["ELASTICSEARCH_URL"]])

if args.create or not await WorkplaceDoc._index.exists():
miguelgrinberg marked this conversation as resolved.
Show resolved Hide resolved
await create()

await search(args.query)

# close the connection
await async_connections.get_connection().close()


if __name__ == "__main__":
asyncio.run(main())
169 changes: 169 additions & 0 deletions examples/vectors.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""
# Vector database example

Requirements:

$ pip install nltk sentence_transformers tqdm elasticsearch_dsl

To run the example:

$ python vectors.py "text to search"

The index will be created automatically if it does not exist. Add `--create` to
regenerate it.

The example dataset includes a selection of workplace documentation. The
following are good example queries to try out:

$ python vectors.py "work from home"
$ python vectors.py "vacation time"
$ python vectors.py "bring a bird to work"
"""

import argparse
import json
import os
from urllib.request import urlopen

import nltk
from sentence_transformers import SentenceTransformer
from tqdm import tqdm

from elasticsearch_dsl import (
Date,
DenseVector,
Document,
InnerDoc,
Keyword,
Nested,
Text,
connections,
)

DATASET_URL = "https://raw.githubusercontent.com/elastic/elasticsearch-labs/main/datasets/workplace-documents.json"
MODEL_NAME = "all-MiniLM-L6-v2"

# initialize sentence tokenizer
nltk.download("punkt", quiet=True)


class Passage(InnerDoc):
content = Text()
embedding = DenseVector()


class WorkplaceDoc(Document):
class Index:
name = "workplace_documents"

name = Text()
summary = Text()
content = Text()
created = Date()
updated = Date()
url = Keyword()
category = Keyword()
passages = Nested(Passage)

_model = None

@classmethod
def get_embedding_model(cls):
if cls._model is None:
cls._model = SentenceTransformer(MODEL_NAME)
return cls._model

def clean(self):
# split the content into sentences
passages = nltk.sent_tokenize(self.content)

# generate an embedding for each passage and save it as a nested document
model = self.get_embedding_model()
for passage in passages:
self.passages.append(
Passage(content=passage, embedding=list(model.encode(passage)))
)


def create():

# create the index
WorkplaceDoc._index.delete(ignore_unavailable=True)
WorkplaceDoc.init()

# download the data
dataset = json.loads(urlopen(DATASET_URL).read())

# import the dataset
for data in tqdm(dataset, desc="Indexing documents..."):
doc = WorkplaceDoc(
name=data["name"],
summary=data["summary"],
content=data["content"],
created=data.get("created_on"),
updated=data.get("updated_at"),
url=data["url"],
category=data["category"],
)
doc.save()


def search(query):
model = WorkplaceDoc.get_embedding_model()
search = WorkplaceDoc.search().knn(
field="passages.embedding",
k=5,
num_candidates=50,
query_vector=list(model.encode(query)),
inner_hits={"size": 3},
)
for hit in search:
print(f"Document: {hit.name} (Category: {hit.category}")
for passage in hit.meta.inner_hits.passages:
print(f" - [Score: {passage.meta.score}] {passage.content!r}")
print("")


def parse_args():
parser = argparse.ArgumentParser(description="Vector database with Elasticsearch")
parser.add_argument(
"--create", action="store_true", help="Create and populate a new index"
)
parser.add_argument("query", action="store", help="The search query")
return parser.parse_args()


def main():
args = parse_args()

# initiate the default connection to elasticsearch
connections.create_connection(hosts=[os.environ["ELASTICSEARCH_URL"]])

if args.create or not WorkplaceDoc._index.exists():
create()

search(args.query)

# close the connection
connections.get_connection().close()


if __name__ == "__main__":
main()
Loading