-
Notifications
You must be signed in to change notification settings - Fork 8.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[8.8] [Security Solution] PoC of the Detection Engine health API (#157155) #159717
Conversation
…57155) **Partially addresses:** https://github.com/elastic/kibana/issues/125642 ## Summary This PR introduces a PoC health API that allows users to get health overview of the Detection Engine across the whole cluster, or within a given Kibana space, or for a given rule. It can be useful for troubleshooting issues with cluster provisioning/scaling, issues with certain rules failing or generating too much load on the cluster, identifying common rule execution errors, etc. In the future, this API might become helpful for building more Rule Monitoring UIs giving our users more clarity and transparency about the work of the Detection Engine. ## Rule health endpoint 🚧 NOTE: this endpoint is **partially implemented**. 🚧 ```txt POST /internal/detection_engine/health/_rule ``` Get health overview of a rule. Scope: a given detection rule in the current Kibana space. Returns: - health stats at the moment of the API call (rule and its execution summary) - health stats over a specified period of time ("health interval") - health stats history within the same interval in the form of a histogram (the same stats are calculated over each of the discreet sub-intervals of the whole interval) Minimal required parameters: ```json { "rule_id": "d4beff10-f045-11ed-89d8-3b6931af10bc" } ``` <details><summary>Response:</summary> <p> ```json { "timings": { "requested_at": "2023-05-26T16:09:54.128Z", "processed_at": "2023-05-26T16:09:54.778Z", "processing_time_ms": 650 }, "parameters": { "interval": { "type": "last_day", "granularity": "hour", "from": "2023-05-25T16:09:54.128Z", "to": "2023-05-26T16:09:54.128Z", "duration": "PT24H" }, "rule_id": "d4beff10-f045-11ed-89d8-3b6931af10bc" }, "health": { "stats_at_the_moment": { "rule": { "id": "d4beff10-f045-11ed-89d8-3b6931af10bc", "updated_at": "2023-05-26T15:44:21.689Z", "updated_by": "elastic", "created_at": "2023-05-11T21:50:23.830Z", "created_by": "elastic", "name": "Test rule", "tags": ["foo"], "interval": "1m", "enabled": true, "revision": 2, "description": "-", "risk_score": 21, "severity": "low", "license": "", "output_index": "", "meta": { "from": "6h", "kibana_siem_app_url": "http://localhost:5601/kbn/app/security" }, "author": [], "false_positives": [], "from": "now-21660s", "rule_id": "e46eaaf3-6d81-4cdb-8cbb-b2201a11358b", "max_signals": 100, "risk_score_mapping": [], "severity_mapping": [], "threat": [], "to": "now", "references": [], "version": 3, "exceptions_list": [], "immutable": false, "related_integrations": [], "required_fields": [], "setup": "", "type": "query", "language": "kuery", "index": [ "apm-*-transaction*", "auditbeat-*", "endgame-*", "filebeat-*", "logs-*", "packetbeat-*", "traces-apm*", "winlogbeat-*", "-*elastic-cloud-logs-*", "foo-*" ], "query": "*", "filters": [], "actions": [ { "group": "default", "id": "bd59c4e0-f045-11ed-89d8-3b6931af10bc", "params": { "body": "Hello world" }, "action_type_id": ".webhook", "uuid": "f8b87eb0-58bb-4d4b-a584-084d44ab847e", "frequency": { "summary": true, "throttle": null, "notifyWhen": "onActiveAlert" } } ], "execution_summary": { "last_execution": { "date": "2023-05-26T16:09:36.848Z", "status": "succeeded", "status_order": 0, "message": "Rule execution completed successfully", "metrics": { "total_search_duration_ms": 2, "execution_gap_duration_s": 80395 } } } } }, "stats_over_interval": { "number_of_executions": { "total": 21, "by_outcome": { "succeeded": 20, "warning": 0, "failed": 1 } }, "number_of_logged_messages": { "total": 42, "by_level": { "error": 1, "warn": 0, "info": 41, "debug": 0, "trace": 0 } }, "number_of_detected_gaps": { "total": 1, "total_duration_s": 80395 }, "schedule_delay_ms": { "percentiles": { "1.0": 3061, "5.0": 3083, "25.0": 3112, "50.0": 6049, "75.0": 6069.5, "95.0": 100093.79999999986, "99.0": 207687 } }, "execution_duration_ms": { "percentiles": { "1.0": 226, "5.0": 228.2, "25.0": 355.5, "50.0": 422, "75.0": 447, "95.0": 677.75, "99.0": 719 } }, "search_duration_ms": { "percentiles": { "1.0": 0, "5.0": 1.1, "25.0": 2.75, "50.0": 7, "75.0": 13.5, "95.0": 29.59999999999998, "99.0": 45 } }, "indexing_duration_ms": { "percentiles": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 0, "95.0": 0, "99.0": 0 } }, "top_errors": [ { "count": 1, "message": "day were not queried between this rule execution and the last execution so signals may have been missed Consider increasing your look behind time or adding more Kibana instances" } ], "top_warnings": [] }, "history_over_interval": { "buckets": [ { "timestamp": "2023-05-26T15:00:00.000Z", "stats": { "number_of_executions": { "total": 12, "by_outcome": { "succeeded": 11, "warning": 0, "failed": 1 } }, "number_of_logged_messages": { "total": 24, "by_level": { "error": 1, "warn": 0, "info": 23, "debug": 0, "trace": 0 } }, "number_of_detected_gaps": { "total": 1, "total_duration_s": 80395 }, "schedule_delay_ms": { "percentiles": { "1.0": 3106, "5.0": 3106.8, "25.0": 3124.5, "50.0": 6067.5, "75.0": 9060.5, "95.0": 188124.59999999971, "99.0": 207687 } }, "execution_duration_ms": { "percentiles": { "1.0": 230, "5.0": 236.2, "25.0": 354, "50.0": 405, "75.0": 447.5, "95.0": 563.3999999999999, "99.0": 576 } }, "search_duration_ms": { "percentiles": { "1.0": 0, "5.0": 0.20000000000000018, "25.0": 2.5, "50.0": 5, "75.0": 14, "95.0": 42.19999999999996, "99.0": 45 } }, "indexing_duration_ms": { "percentiles": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 0, "95.0": 0, "99.0": 0 } } } }, { "timestamp": "2023-05-26T16:00:00.000Z", "stats": { "number_of_executions": { "total": 9, "by_outcome": { "succeeded": 9, "warning": 0, "failed": 0 } }, "number_of_logged_messages": { "total": 18, "by_level": { "error": 0, "warn": 0, "info": 18, "debug": 0, "trace": 0 } }, "number_of_detected_gaps": { "total": 0, "total_duration_s": 0 }, "schedule_delay_ms": { "percentiles": { "1.0": 3061, "5.0": 3061, "25.0": 3104.75, "50.0": 3115, "75.0": 6053, "95.0": 6068, "99.0": 6068 } }, "execution_duration_ms": { "percentiles": { "1.0": 226.00000000000003, "5.0": 226, "25.0": 356, "50.0": 436, "75.0": 495.5, "95.0": 719, "99.0": 719 } }, "search_duration_ms": { "percentiles": { "1.0": 2, "5.0": 2, "25.0": 5.75, "50.0": 8, "75.0": 13.75, "95.0": 17, "99.0": 17 } }, "indexing_duration_ms": { "percentiles": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 0, "95.0": 0, "99.0": 0 } } } } ] } } } ``` </p> </details> ## Space health endpoint 🚧 NOTE: this endpoint is **partially implemented**. 🚧 ```txt POST /internal/detection_engine/health/_space ``` Get health overview of the current Kibana space. Scope: all detection rules in the space. Returns: - health stats at the moment of the API call - health stats over a specified period of time ("health interval") - health stats history within the same interval in the form of a histogram (the same stats are calculated over each of the discreet sub-intervals of the whole interval) Minimal required parameters: empty object. ```json {} ``` <details><summary>Response:</summary> <p> ```json { "timings": { "requested_at": "2023-05-26T16:24:21.628Z", "processed_at": "2023-05-26T16:24:22.880Z", "processing_time_ms": 1252 }, "parameters": { "interval": { "type": "last_day", "granularity": "hour", "from": "2023-05-25T16:24:21.628Z", "to": "2023-05-26T16:24:21.628Z", "duration": "PT24H" } }, "health": { "stats_at_the_moment": { "number_of_rules": { "all": { "total": 777, "enabled": 777, "disabled": 0 }, "by_origin": { "prebuilt": { "total": 776, "enabled": 776, "disabled": 0 }, "custom": { "total": 1, "enabled": 1, "disabled": 0 } }, "by_type": { "siem.eqlRule": { "total": 381, "enabled": 381, "disabled": 0 }, "siem.queryRule": { "total": 325, "enabled": 325, "disabled": 0 }, "siem.mlRule": { "total": 47, "enabled": 47, "disabled": 0 }, "siem.thresholdRule": { "total": 18, "enabled": 18, "disabled": 0 }, "siem.newTermsRule": { "total": 4, "enabled": 4, "disabled": 0 }, "siem.indicatorRule": { "total": 2, "enabled": 2, "disabled": 0 } }, "by_outcome": { "warning": { "total": 307, "enabled": 307, "disabled": 0 }, "succeeded": { "total": 266, "enabled": 266, "disabled": 0 }, "failed": { "total": 204, "enabled": 204, "disabled": 0 } } } }, "stats_over_interval": { "number_of_executions": { "total": 5622, "by_outcome": { "succeeded": 1882, "warning": 2129, "failed": 2120 } }, "number_of_logged_messages": { "total": 11756, "by_level": { "error": 2120, "warn": 2129, "info": 7507, "debug": 0, "trace": 0 } }, "number_of_detected_gaps": { "total": 777, "total_duration_s": 514415894 }, "schedule_delay_ms": { "percentiles": { "1.0": 216, "5.0": 3048.5, "25.0": 3105, "50.0": 3129, "75.0": 6112.355119825708, "95.0": 134006, "99.0": 195578 } }, "execution_duration_ms": { "percentiles": { "1.0": 275, "5.0": 323.375, "25.0": 370.80555555555554, "50.0": 413.1122337092731, "75.0": 502.25233127864715, "95.0": 685.8055555555555, "99.0": 1194.75 } }, "search_duration_ms": { "percentiles": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 15, "95.0": 30, "99.0": 99.44000000000005 } }, "indexing_duration_ms": { "percentiles": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 0, "95.0": 0, "99.0": 0 } }, "top_errors": [ { "count": 1202, "message": "An error occurred during rule execution message verification_exception" }, { "count": 777, "message": "were not queried between this rule execution and the last execution so signals may have been missed Consider increasing your look behind time or adding more Kibana instances" }, { "count": 3, "message": "An error occurred during rule execution message rare_error_code missing" }, { "count": 3, "message": "An error occurred during rule execution message v3_windows_anomalous_path_activity missing" }, { "count": 3, "message": "An error occurred during rule execution message v3_windows_rare_user_type10_remote_login missing" } ], "top_warnings": [ { "count": 2129, "message": "This rule is attempting to query data from Elasticsearch indices listed in the Index pattern section of the rule definition however no index matching was found This warning will continue to appear until matching index is created or this rule is disabled" } ] }, "history_over_interval": { "buckets": [ { "timestamp": "2023-05-26T15:00:00.000Z", "stats": { "number_of_executions": { "total": 2245, "by_outcome": { "succeeded": 566, "warning": 849, "failed": 1336 } }, "number_of_logged_messages": { "total": 4996, "by_level": { "error": 1336, "warn": 849, "info": 2811, "debug": 0, "trace": 0 } }, "number_of_detected_gaps": { "total": 777, "total_duration_s": 514415894 }, "schedule_delay_ms": { "percentiles": { "1.0": 256, "5.0": 3086.9722222222217, "25.0": 3133, "50.0": 6126, "75.0": 59484.25, "95.0": 179817.25, "99.0": 202613 } }, "execution_duration_ms": { "percentiles": { "1.0": 280.6, "5.0": 327.7, "25.0": 371.5208333333333, "50.0": 415.6190476190476, "75.0": 505.7642857142857, "95.0": 740.4375, "99.0": 1446.1500000000005 } }, "search_duration_ms": { "percentiles": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 8, "95.0": 25, "99.0": 46 } }, "indexing_duration_ms": { "percentiles": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 0, "95.0": 0, "99.0": 0 } } } }, { "timestamp": "2023-05-26T16:00:00.000Z", "stats": { "number_of_executions": { "total": 3363, "by_outcome": { "succeeded": 1316, "warning": 1280, "failed": 784 } }, "number_of_logged_messages": { "total": 6760, "by_level": { "error": 784, "warn": 1280, "info": 4696, "debug": 0, "trace": 0 } }, "number_of_detected_gaps": { "total": 0, "total_duration_s": 0 }, "schedule_delay_ms": { "percentiles": { "1.0": 207, "5.0": 3042, "25.0": 3098.46511627907, "50.0": 3112, "75.0": 3145.2820512820517, "95.0": 6100.571428571428, "99.0": 6123 } }, "execution_duration_ms": { "percentiles": { "1.0": 275, "5.0": 319.85714285714283, "25.0": 370.0357142857143, "50.0": 410.79999229108853, "75.0": 500.7692307692308, "95.0": 675, "99.0": 781.3999999999996 } }, "search_duration_ms": { "percentiles": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 9, "75.0": 17.555555555555557, "95.0": 34, "99.0": 110.5 } }, "indexing_duration_ms": { "percentiles": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 0, "95.0": 0, "99.0": 0 } } } } ] } } } ``` </p> </details> ## Cluster health endpoint 🚧 NOTE: this endpoint is **not implemented**. 🚧 ```txt POST /internal/detection_engine/health/_cluster ``` Minimal required parameters: empty object. ```json {} ``` <details><summary>Response:</summary> <p> ```json { "message": "Not implemented", "timings": { "requested_at": "2023-05-26T16:32:01.878Z", "processed_at": "2023-05-26T16:32:01.881Z", "processing_time_ms": 3 }, "parameters": { "interval": { "type": "last_week", "granularity": "hour", "from": "2023-05-19T16:32:01.878Z", "to": "2023-05-26T16:32:01.878Z", "duration": "PT168H" } }, "health": { "stats_at_the_moment": { "number_of_rules": { "all": { "total": 0, "enabled": 0, "disabled": 0 }, "by_origin": { "prebuilt": { "total": 0, "enabled": 0, "disabled": 0 }, "custom": { "total": 0, "enabled": 0, "disabled": 0 } }, "by_type": {}, "by_outcome": {} } }, "stats_over_interval": { "message": "Not implemented" }, "history_over_interval": { "buckets": [] } } } ``` </p> </details> ## Optional parameters All the three endpoints accept optional `interval` and `debug` request parameters. ### Health interval You can change the interval over which the health stats will be calculated. If you don't specify it, by default health stats will be calculated over the last day with the granularity of 1 hour. ```json { "interval": { "type": "last_week", "granularity": "day" } } ``` You can also specify a custom date range with exact interval bounds. ```json { "interval": { "type": "custom_range", "granularity": "minute", "from": "2023-05-20T16:24:21.628Z", "to": "2023-05-26T16:24:21.628Z" } } ``` Please keep in mind that requesting large intervals with small granularity can generate substantial load on the system and enormous API responses. ### Debug mode You can also include various debug information in the response, such as queries and aggregations sent to Elasticsearch and response received from it. ```json { "debug": true } ``` In the response you will find something like that: <details><summary>Response:</summary> <p> ```json { "health": { "debug": { "rulesClient": { "request": { "aggs": { "rulesByEnabled": { "terms": { "field": "alert.attributes.enabled" } }, "rulesByOrigin": { "terms": { "field": "alert.attributes.params.immutable" }, "aggs": { "rulesByEnabled": { "terms": { "field": "alert.attributes.enabled" } } } }, "rulesByType": { "terms": { "field": "alert.attributes.alertTypeId" }, "aggs": { "rulesByEnabled": { "terms": { "field": "alert.attributes.enabled" } } } }, "rulesByOutcome": { "terms": { "field": "alert.attributes.lastRun.outcome" }, "aggs": { "rulesByEnabled": { "terms": { "field": "alert.attributes.enabled" } } } } } }, "response": { "aggregations": { "rulesByOutcome": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "warning", "doc_count": 307, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 307 } ] } }, { "key": "succeeded", "doc_count": 266, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 266 } ] } }, { "key": "failed", "doc_count": 204, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 204 } ] } } ] }, "rulesByType": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "siem.eqlRule", "doc_count": 381, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 381 } ] } }, { "key": "siem.queryRule", "doc_count": 325, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 325 } ] } }, { "key": "siem.mlRule", "doc_count": 47, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 47 } ] } }, { "key": "siem.thresholdRule", "doc_count": 18, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 18 } ] } }, { "key": "siem.newTermsRule", "doc_count": 4, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 4 } ] } }, { "key": "siem.indicatorRule", "doc_count": 2, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 2 } ] } } ] }, "rulesByOrigin": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "true", "doc_count": 776, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 776 } ] } }, { "key": "false", "doc_count": 1, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 1 } ] } } ] }, "rulesByEnabled": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": 1, "key_as_string": "true", "doc_count": 777 } ] } } } }, "eventLog": { "request": { "aggs": { "totalExecutions": { "cardinality": { "field": "kibana.alert.rule.execution.uuid" } }, "executeEvents": { "filter": { "term": { "event.action": "execute" } }, "aggs": { "executionDurationMs": { "percentiles": { "field": "kibana.alert.rule.execution.metrics.total_run_duration_ms", "missing": 0, "percents": [1, 5, 25, 50, 75, 95, 99] } }, "scheduleDelayNs": { "percentiles": { "field": "kibana.task.schedule_delay", "missing": 0, "percents": [1, 5, 25, 50, 75, 95, 99] } } } }, "statusChangeEvents": { "filter": { "bool": { "filter": [ { "term": { "event.action": "status-change" } } ], "must_not": [ { "terms": { "kibana.alert.rule.execution.status": ["running", "going to run"] } } ] } }, "aggs": { "executionsByStatus": { "terms": { "field": "kibana.alert.rule.execution.status" } } } }, "executionMetricsEvents": { "filter": { "term": { "event.action": "execution-metrics" } }, "aggs": { "gaps": { "filter": { "exists": { "field": "kibana.alert.rule.execution.metrics.execution_gap_duration_s" } }, "aggs": { "totalGapDurationS": { "sum": { "field": "kibana.alert.rule.execution.metrics.execution_gap_duration_s" } } } }, "searchDurationMs": { "percentiles": { "field": "kibana.alert.rule.execution.metrics.total_search_duration_ms", "missing": 0, "percents": [1, 5, 25, 50, 75, 95, 99] } }, "indexingDurationMs": { "percentiles": { "field": "kibana.alert.rule.execution.metrics.total_indexing_duration_ms", "missing": 0, "percents": [1, 5, 25, 50, 75, 95, 99] } } } }, "messageContainingEvents": { "filter": { "terms": { "event.action": ["status-change", "message"] } }, "aggs": { "messagesByLogLevel": { "terms": { "field": "log.level" } }, "errors": { "filter": { "term": { "log.level": "error" } }, "aggs": { "topErrors": { "categorize_text": { "field": "message", "size": 5, "similarity_threshold": 99 } } } }, "warnings": { "filter": { "term": { "log.level": "warn" } }, "aggs": { "topWarnings": { "categorize_text": { "field": "message", "size": 5, "similarity_threshold": 99 } } } } } }, "statsHistory": { "date_histogram": { "field": "@timestamp", "calendar_interval": "hour" }, "aggs": { "totalExecutions": { "cardinality": { "field": "kibana.alert.rule.execution.uuid" } }, "executeEvents": { "filter": { "term": { "event.action": "execute" } }, "aggs": { "executionDurationMs": { "percentiles": { "field": "kibana.alert.rule.execution.metrics.total_run_duration_ms", "missing": 0, "percents": [1, 5, 25, 50, 75, 95, 99] } }, "scheduleDelayNs": { "percentiles": { "field": "kibana.task.schedule_delay", "missing": 0, "percents": [1, 5, 25, 50, 75, 95, 99] } } } }, "statusChangeEvents": { "filter": { "bool": { "filter": [ { "term": { "event.action": "status-change" } } ], "must_not": [ { "terms": { "kibana.alert.rule.execution.status": ["running", "going to run"] } } ] } }, "aggs": { "executionsByStatus": { "terms": { "field": "kibana.alert.rule.execution.status" } } } }, "executionMetricsEvents": { "filter": { "term": { "event.action": "execution-metrics" } }, "aggs": { "gaps": { "filter": { "exists": { "field": "kibana.alert.rule.execution.metrics.execution_gap_duration_s" } }, "aggs": { "totalGapDurationS": { "sum": { "field": "kibana.alert.rule.execution.metrics.execution_gap_duration_s" } } } }, "searchDurationMs": { "percentiles": { "field": "kibana.alert.rule.execution.metrics.total_search_duration_ms", "missing": 0, "percents": [1, 5, 25, 50, 75, 95, 99] } }, "indexingDurationMs": { "percentiles": { "field": "kibana.alert.rule.execution.metrics.total_indexing_duration_ms", "missing": 0, "percents": [1, 5, 25, 50, 75, 95, 99] } } } }, "messageContainingEvents": { "filter": { "terms": { "event.action": ["status-change", "message"] } }, "aggs": { "messagesByLogLevel": { "terms": { "field": "log.level" } } } } } } } }, "response": { "aggregations": { "statsHistory": { "buckets": [ { "key_as_string": "2023-05-26T15:00:00.000Z", "key": 1685113200000, "doc_count": 11388, "statusChangeEvents": { "doc_count": 2751, "executionsByStatus": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "failed", "doc_count": 1336 }, { "key": "partial failure", "doc_count": 849 }, { "key": "succeeded", "doc_count": 566 } ] } }, "totalExecutions": { "value": 2245 }, "messageContainingEvents": { "doc_count": 4996, "messagesByLogLevel": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "info", "doc_count": 2811 }, { "key": "error", "doc_count": 1336 }, { "key": "warn", "doc_count": 849 } ] } }, "executeEvents": { "doc_count": 2245, "scheduleDelayNs": { "values": { "1.0": 256000000, "5.0": 3086972222.222222, "25.0": 3133000000, "50.0": 6126000000, "75.0": 59484250000, "95.0": 179817250000, "99.0": 202613000000 } }, "executionDurationMs": { "values": { "1.0": 280.6, "5.0": 327.7, "25.0": 371.5208333333333, "50.0": 415.6190476190476, "75.0": 505.575, "95.0": 740.4375, "99.0": 1446.1500000000005 } } }, "executionMetricsEvents": { "doc_count": 1902, "searchDurationMs": { "values": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 8, "95.0": 25, "99.0": 46 } }, "gaps": { "doc_count": 777, "totalGapDurationS": { "value": 514415894 } }, "indexingDurationMs": { "values": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 0, "95.0": 0, "99.0": 0 } } } }, { "key_as_string": "2023-05-26T16:00:00.000Z", "key": 1685116800000, "doc_count": 28325, "statusChangeEvents": { "doc_count": 6126, "executionsByStatus": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "succeeded", "doc_count": 2390 }, { "key": "partial failure", "doc_count": 2305 }, { "key": "failed", "doc_count": 1431 } ] } }, "totalExecutions": { "value": 6170 }, "messageContainingEvents": { "doc_count": 12252, "messagesByLogLevel": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "info", "doc_count": 8516 }, { "key": "warn", "doc_count": 2305 }, { "key": "error", "doc_count": 1431 } ] } }, "executeEvents": { "doc_count": 6126, "scheduleDelayNs": { "values": { "1.0": 193000000, "5.0": 3017785185.1851854, "25.0": 3086000000, "50.0": 3105877192.982456, "75.0": 3134645161.290323, "95.0": 6081772222.222222, "99.0": 6122000000 } }, "executionDurationMs": { "values": { "1.0": 275.17333333333335, "5.0": 324.8014285714285, "25.0": 377.0752688172043, "50.0": 431, "75.0": 532.3870967741935, "95.0": 720.6761904761904, "99.0": 922.6799999999985 } } }, "executionMetricsEvents": { "doc_count": 3821, "searchDurationMs": { "values": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 9.8, "75.0": 18, "95.0": 40.17499999999999, "99.0": 124 } }, "gaps": { "doc_count": 0, "totalGapDurationS": { "value": 0 } }, "indexingDurationMs": { "values": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 0, "95.0": 0, "99.0": 0 } } } } ] }, "statusChangeEvents": { "doc_count": 8877, "executionsByStatus": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "partial failure", "doc_count": 3154 }, { "key": "succeeded", "doc_count": 2956 }, { "key": "failed", "doc_count": 2767 } ] } }, "totalExecutions": { "value": 8455 }, "messageContainingEvents": { "doc_count": 17248, "messagesByLogLevel": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "info", "doc_count": 11327 }, { "key": "warn", "doc_count": 3154 }, { "key": "error", "doc_count": 2767 } ] }, "warnings": { "doc_count": 3154, "topWarnings": { "buckets": [ { "doc_count": 3154, "key": "This rule is attempting to query data from Elasticsearch indices listed in the Index pattern section of the rule definition however no index matching was found This warning will continue to appear until matching index is created or this rule is disabled", "regex": ".*?This.+?rule.+?is.+?attempting.+?to.+?query.+?data.+?from.+?Elasticsearch.+?indices.+?listed.+?in.+?the.+?Index.+?pattern.+?section.+?of.+?the.+?rule.+?definition.+?however.+?no.+?index.+?matching.+?was.+?found.+?This.+?warning.+?will.+?continue.+?to.+?appear.+?until.+?matching.+?index.+?is.+?created.+?or.+?this.+?rule.+?is.+?disabled.*?", "max_matching_length": 342 } ] } }, "errors": { "doc_count": 2767, "topErrors": { "buckets": [ { "doc_count": 1802, "key": "An error occurred during rule execution message verification_exception", "regex": ".*?An.+?error.+?occurred.+?during.+?rule.+?execution.+?message.+?verification_exception.*?", "max_matching_length": 2064 }, { "doc_count": 777, "key": "were not queried between this rule execution and the last execution so signals may have been missed Consider increasing your look behind time or adding more Kibana instances", "regex": ".*?were.+?not.+?queried.+?between.+?this.+?rule.+?execution.+?and.+?the.+?last.+?execution.+?so.+?signals.+?may.+?have.+?been.+?missed.+?Consider.+?increasing.+?your.+?look.+?behind.+?time.+?or.+?adding.+?more.+?Kibana.+?instances.*?", "max_matching_length": 216 }, { "doc_count": 4, "key": "An error occurred during rule execution message rare_error_code missing", "regex": ".*?An.+?error.+?occurred.+?during.+?rule.+?execution.+?message.+?rare_error_code.+?missing.*?", "max_matching_length": 82 }, { "doc_count": 4, "key": "An error occurred during rule execution message v3_windows_anomalous_path_activity missing", "regex": ".*?An.+?error.+?occurred.+?during.+?rule.+?execution.+?message.+?v3_windows_anomalous_path_activity.+?missing.*?", "max_matching_length": 103 }, { "doc_count": 4, "key": "An error occurred during rule execution message v3_windows_rare_user_type10_remote_login missing", "regex": ".*?An.+?error.+?occurred.+?during.+?rule.+?execution.+?message.+?v3_windows_rare_user_type10_remote_login.+?missing.*?", "max_matching_length": 110 } ] } } }, "executeEvents": { "doc_count": 8371, "scheduleDelayNs": { "values": { "1.0": 206000000, "5.0": 3027000000, "25.0": 3092000000, "50.0": 3116000000, "75.0": 3278666666.6666665, "95.0": 99656950000, "99.0": 186632790000 } }, "executionDurationMs": { "values": { "1.0": 275.5325, "5.0": 326.07857142857137, "25.0": 375.68969144460027, "50.0": 427, "75.0": 526.2948717948718, "95.0": 727.2480952380952, "99.0": 1009.5299999999934 } } }, "executionMetricsEvents": { "doc_count": 5723, "searchDurationMs": { "values": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 4, "75.0": 16, "95.0": 34.43846153846145, "99.0": 116.51333333333302 } }, "gaps": { "doc_count": 777, "totalGapDurationS": { "value": 514415894 } }, "indexingDurationMs": { "values": { "1.0": 0, "5.0": 0, "25.0": 0, "50.0": 0, "75.0": 0, "95.0": 0, "99.0": 0 } } } } } } } } } ``` </p> </details> ## Other notes I'm thinking about backporting it to `8.8` so it could become available in `8.8.1+` clusters. In the next episodes: - Add support for it to the [support-diagnostics](https://github.com/elastic/support-diagnostics) tool so its output could be available in the diagnostic dumps. - Implement the cluster health endpoint. - Calculate more metrics for the rule health endpoint. - Calculate more metrics for the space health endpoint. - Etc - see the to-do list in the epic. ### Checklist Delete any items that are not applicable to this PR. - [x] [Documentation](https://www.elastic.co/guide/en/kibana/master/development-documentation.html) was added for features that require explanation or tutorials - See dev docs added in `x-pack/plugins/security_solution/common/detection_engine/rule_monitoring/api/detection_engine_health/README.md` - [ ] [Unit or functional tests](https://www.elastic.co/guide/en/kibana/master/development-tests.html) were updated or added to match the most common scenarios (cherry picked from commit 8ac83df6202759d38b04a781d8739c0ce3e0986e) # Conflicts: # x-pack/plugins/security_solution/server/plugin.ts
buildkite test this |
💚 Build Succeeded
Metrics [docs]Module Count
Public APIs missing comments
Async chunks
Public APIs missing exports
Unknown metric groupsAPI count
ESLint disabled line counts
Total ESLint disabled count
To update your PR or re-run it, just comment with: cc @banderror |
Backport
This will backport the following PR from
main
to8.8
:Questions ?
Please refer to the Backport tool documentation