-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4b35f3f
commit 5a4a048
Showing
1 changed file
with
172 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
import pandas as pd | ||
import numpy as np | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.metrics import confusion_matrix | ||
from keras.models import Sequential | ||
from keras.optimizers import SGD | ||
from keras.layers import Dense, BatchNormalization, Activation, Dropout | ||
from keras.callbacks import EarlyStopping, Callback | ||
from matplotlib import pyplot as plt | ||
import matplotlib.pyplot as plt | ||
from keras.models import load_model | ||
from IPython.display import clear_output | ||
|
||
user_object = dict() | ||
|
||
user_object["fake"] = pd.read_csv("Dataset/fake_twitter_accounts.csv") | ||
user_object["legit"] = pd.read_csv("Dataset/real_twitter_accounts.csv") | ||
|
||
user_object["legit"] = user_object["legit"].drop( | ||
["id", "name", "screen_name", "created_at", "lang", "location", "default_profile", "default_profile_image", | ||
"geo_enabled", "profile_image_url", "profile_banner_url", "profile_use_background_image", | ||
"profile_background_image_url_https", "profile_text_color", "profile_image_url_https", | ||
"profile_sidebar_border_color", "profile_background_tile", "profile_sidebar_fill_color", | ||
"profile_background_image_url", "profile_background_color", "profile_link_color", "utc_offset", "protected", | ||
"verified", "dataset", "updated", "description"], axis=1) | ||
|
||
user_object["fake"] = user_object["fake"].drop( | ||
["id", "name", "screen_name", "created_at", "lang", "location", "default_profile", "default_profile_image", | ||
"geo_enabled", "profile_image_url", "profile_banner_url", "profile_use_background_image", | ||
"profile_background_image_url_https", "profile_text_color", "profile_image_url_https", | ||
"profile_sidebar_border_color", "profile_background_tile", "profile_sidebar_fill_color", | ||
"profile_background_image_url", "profile_background_color", "profile_link_color", "utc_offset", "protected", | ||
"verified", "dataset", "updated", "description"], axis=1) | ||
|
||
user_object["legit"] = user_object["legit"].values | ||
user_object["fake"] = user_object["fake"].values | ||
|
||
for index in range(len(user_object["legit"])): | ||
if type(user_object["legit"][index][5]) == str: | ||
user_object["legit"][index][5] = 1 | ||
|
||
if type(user_object["legit"][index][6]) == str: | ||
user_object["legit"][index][6] = 1 | ||
|
||
for index in range(len(user_object["fake"])): | ||
if type(user_object["fake"][index][5]) == str: | ||
user_object["fake"][index][5] = 1 | ||
|
||
if type(user_object["fake"][index][6]) == str: | ||
user_object["fake"][index][6] = 1 | ||
|
||
user_object["legit"] = user_object["legit"].astype(np.float64) | ||
user_object["fake"] = user_object["fake"].astype(np.float64) | ||
|
||
where_nans = np.isnan(user_object["legit"]) | ||
user_object["legit"][where_nans] = 0 | ||
|
||
where_nans = np.isnan(user_object["fake"]) | ||
user_object["fake"][where_nans] = 0 | ||
|
||
X = np.zeros((len(user_object["fake"]) + len(user_object["legit"]), 7)) | ||
Y = np.zeros(len(user_object["fake"]) + len(user_object["legit"])) | ||
|
||
for index in range(len(user_object["legit"])): | ||
X[index] = user_object["legit"][index] / max(user_object["legit"][index]) | ||
Y[index] = -1 | ||
|
||
for index in range(len(user_object["fake"])): | ||
bound = max(user_object["fake"][index]) | ||
if bound == 0: | ||
bound = 1 | ||
|
||
X[len(user_object["legit"]) + index] = user_object["fake"][index] / bound # Normalizing Data [0 <--> 1] | ||
Y[len(user_object["legit"]) + index] = 1 | ||
|
||
X_train_data, X_test_data, y_train_data, y_test_data = train_test_split(X, Y, | ||
test_size=0.24, random_state=42) | ||
|
||
early_stopping = EarlyStopping(monitor='val_loss', patience=2) | ||
|
||
|
||
class PlotLearning(Callback): | ||
def on_train_begin(self, logs={}): | ||
self.i = 0 | ||
self.x = [] | ||
self.losses = [] | ||
self.val_losses = [] | ||
self.acc = [] | ||
self.val_acc = [] | ||
self.fig = plt.figure() | ||
|
||
self.logs = [] | ||
|
||
def on_epoch_end(self, epoch, logs={}): | ||
self.logs.append(logs) | ||
self.x.append(self.i) | ||
self.losses.append(logs.get('loss')) | ||
self.val_losses.append(logs.get('val_loss')) | ||
self.acc.append(logs.get('acc')) | ||
self.val_acc.append(logs.get('val_acc')) | ||
self.i += 1 | ||
f, (ax1, ax2) = plt.subplots(1, 2, sharex=True) | ||
|
||
clear_output(wait=True) | ||
|
||
ax1.set_yscale('Log') | ||
ax1.plot(self.x, self.losses, label="loss") | ||
ax1.plot(self.x, self.val_losses, label="val_loss") | ||
ax1.legend() | ||
|
||
ax2.plot(self.x, self.acc, label="accuracy") | ||
ax2.plot(self.x, self.val_acc, label="validation accuracy") | ||
ax2.legend() | ||
|
||
plt.show(); | ||
|
||
|
||
plot = PlotLearning() | ||
|
||
model = Sequential([ | ||
BatchNormalization(), | ||
|
||
Dense(16, activation="relu", kernel_regularizer="l2"), | ||
BatchNormalization(), | ||
Dense(8, activation="relu", kernel_regularizer="l2"), | ||
BatchNormalization(), | ||
Dense(1, activation="tanh"), | ||
]) | ||
|
||
model.build((None, X.shape[1])) | ||
model.summary() | ||
model.compile( | ||
optimizer="adadelta", | ||
loss="binary_crossentropy", | ||
metrics=["acc"] | ||
) | ||
|
||
model.fit(X_train_data, y_train_data, epochs=2000, validation_data=(X_test_data, y_test_data), shuffle=True, | ||
batch_size=100, | ||
callbacks=[early_stopping, plot]) | ||
|
||
prediction = model.predict(X_test_data).T[0] | ||
|
||
for index in range(len(prediction)): | ||
prediction[index] = -1 if prediction[index] < 0 else 1 | ||
|
||
|
||
def plot_confusion_matrix(cm, title='CONFUSION MATRIX', cmap=plt.cm.Reds): | ||
target_names = ['Fake', 'Real'] | ||
plt.imshow(cm, interpolation='nearest', cmap=cmap) | ||
plt.title(title) | ||
plt.colorbar() | ||
tick_marks = np.arange(len(target_names)) | ||
plt.xticks(tick_marks, target_names, rotation=45) | ||
plt.yticks(tick_marks, target_names) | ||
plt.tight_layout() | ||
plt.ylabel('True label') | ||
plt.xlabel('Predicted label') | ||
|
||
|
||
mat = confusion_matrix(y_test_data, prediction) | ||
print(mat) | ||
|
||
plot_confusion_matrix(mat) | ||
|
||
_, train_accuracy = model.evaluate(X_train_data, y_train_data) | ||
_, validation_accuracy = model.evaluate(X_test_data, y_test_data) | ||
print("Train Accuracy:", train_accuracy) | ||
print("Validation Accuracy:", validation_accuracy) | ||
|
||
model.save('keras_model/model_twitter.hdf5') | ||
frozen_model = load_model("keras_model/model_twitter.hdf5") |