Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add implementations of common reranker models #1309

Merged
merged 9 commits into from
Oct 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions mteb/benchmarks/benchmarks.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ def load_results(
base_results = load_results()
return base_results.select_tasks(self.tasks)


MTEB_MAIN_EN = Benchmark(
name="MTEB(eng)",
tasks=get_tasks(
Expand Down
4 changes: 4 additions & 0 deletions mteb/models/overview.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,8 @@
mxbai_models,
nomic_models,
openai_models,
rerankers_custom,
rerankers_monot5_based,
ru_sentence_models,
salesforce_models,
sentence_transformers_models,
Expand All @@ -47,6 +49,8 @@
sentence_transformers_models,
voyage_models,
google_models,
rerankers_monot5_based,
rerankers_custom,
]
MODEL_REGISTRY = {}

Expand Down
251 changes: 251 additions & 0 deletions mteb/models/rerankers_custom.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
from __future__ import annotations

import logging
from functools import partial
from typing import Any, Callable

import torch
from sentence_transformers import CrossEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer

from mteb.encoder_interface import Encoder
from mteb.evaluation.evaluators.RetrievalEvaluator import DenseRetrievalExactSearch
from mteb.model_meta import ModelMeta

logger = logging.getLogger(__name__)


class RerankerWrapper(DenseRetrievalExactSearch):
def __init__(
self,
model_name_or_path: str,
batch_size: int = 4,
fp_options: bool = None,
silent: bool = False,
):
self.model_name_or_path = model_name_or_path
self.batch_size = batch_size
self.fp_options = fp_options if fp_options is not None else torch.float32
if self.fp_options == "auto":
self.fp_options = torch.float32
elif self.fp_options == "float16":
self.fp_options = torch.float16
elif self.fp_options == "float32":
self.fp_options = torch.float32
elif self.fp_options == "bfloat16":
self.fp_options = torch.bfloat16
print(f"Using fp_options of {self.fp_options}")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.silent = silent
self.first_print = True # for debugging

def predict(self, input_to_rerank, **kwargs) -> list:
pass


class BGEReranker(RerankerWrapper):
name: str = "BGE"

def __init__(
self,
model_name_or_path="BAAI/bge-reranker-v2-m3",
torch_compile=False,
**kwargs,
):
super().__init__(model_name_or_path, **kwargs)
if not self.device:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_args = {}
if self.fp_options:
model_args["torch_dtype"] = self.fp_options

try:
from FlagEmbedding import FlagReranker
except ImportError:
raise ImportError(
"FlagEmbedding is not installed. Please install it via `pip install mteb[flagembedding]`"
)

self.model = FlagReranker(model_name_or_path, use_fp16=True)

@torch.inference_mode()
def predict(self, input_to_rerank, **kwargs):
queries, passages, instructions = list(zip(*input_to_rerank))
if instructions is not None and instructions[0] is not None:
assert len(instructions) == len(queries)
queries = [f"{q} {i}".strip() for i, q in zip(instructions, queries)]

assert len(queries) == len(passages)
query_passage_tuples = list(zip(queries, passages))
scores = self.model.compute_score(query_passage_tuples, normalize=True)
assert len(scores) == len(
queries
), f"Expected {len(queries)} scores, got {len(scores)}"
return scores


class MonoBERTReranker(RerankerWrapper):
name: str = "MonoBERT"

def __init__(
self,
model_name_or_path="castorini/monobert-large-msmarco",
torch_compile=False,
**kwargs,
):
super().__init__(model_name_or_path, **kwargs)
if not self.device:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_args = {}
if self.fp_options:
model_args["torch_dtype"] = self.fp_options
self.model = AutoModelForSequenceClassification.from_pretrained(
model_name_or_path,
**model_args,
)
self.model.to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
self.max_length = self.tokenizer.model_max_length
logger.info(f"Using max_length of {self.max_length}")

self.model.eval()

@torch.inference_mode()
def predict(self, input_to_rerank, **kwargs):
queries, passages, instructions = list(zip(*input_to_rerank))
if instructions is not None and instructions[0] is not None:
queries = [f"{q} {i}".strip() for i, q in zip(instructions, queries)]

tokens = self.tokenizer(
queries,
passages,
padding=True,
truncation="only_second",
return_tensors="pt",
max_length=self.max_length,
).to(self.device)
output = self.model(**tokens)[0]
batch_scores = torch.nn.functional.log_softmax(output, dim=1)
return batch_scores[:, 1].exp().tolist()


class JinaReranker(RerankerWrapper):
name = "Jina"

def __init__(
self,
model_name_or_path="jinaai/jina-reranker-v2-base-multilingual",
torch_compile=False,
**kwargs,
):
super().__init__(model_name_or_path, **kwargs)
if not self.device:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_args = {}
if self.fp_options:
model_args["torch_dtype"] = self.fp_options

self.model = CrossEncoder(
model_name_or_path,
automodel_args={"torch_dtype": "auto"},
trust_remote_code=True,
)

def predict(self, input_to_rerank, **kwargs):
queries, passages, instructions = list(zip(*input_to_rerank))
if instructions is not None and instructions[0] is not None:
queries = [f"{q} {i}".strip() for i, q in zip(instructions, queries)]

if self.first_print:
logger.info(f"Using {queries[0]}")
self.first_print = False

sentence_pairs = list(zip(queries, passages))
scores = self.model.predict(sentence_pairs, convert_to_tensor=True).tolist()
return scores


def _loader(wrapper: type[RerankerWrapper], **kwargs) -> Callable[..., Encoder]:
_kwargs = kwargs

def loader_inner(**kwargs: Any) -> Encoder:
return wrapper(**_kwargs, **kwargs)

return loader_inner()


monobert_large = ModelMeta(
loader=partial(
_loader,
wrapper=MonoBERTReranker,
model_name_or_path="castorini/monobert-large-msmarco",
fp_options="float1616",
),
name="castorini/monobert-large-msmarco",
languages=["eng_Latn"],
open_source=True,
revision="0a97706f3827389da43b83348d5d18c9d53876fa",
release_date="2020-05-28",
)

# languages unclear: https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual/discussions/28
jina_reranker_multilingual = ModelMeta(
loader=partial(
_loader,
wrapper=JinaReranker,
model_name_or_path="jinaai/jina-reranker-v2-base-multilingual",
fp_options="float1616",
),
name="jinaai/jina-reranker-v2-base-multilingual",
languages=["eng_Latn"],
open_source=True,
revision="126747772a932960028d9f4dc93bd5d9c4869be4",
release_date="2024-09-26",
)

bge_reranker_v2_m3 = ModelMeta(
loader=partial(
_loader,
wrapper=BGEReranker,
model_name_or_path="BAAI/bge-reranker-v2-m3",
fp_options="float1616",
),
name="BAAI/bge-reranker-v2-m3",
languages=[
"eng_Latn",
"ara_Arab",
"ben_Beng",
"spa_Latn",
"fas_Arab",
"fin_Latn",
"fra_Latn",
"hin_Deva",
"ind_Latn",
"jpn_Jpan",
"kor_Hang",
"rus_Cyrl",
"swa_Latn",
"tel_Telu",
"tha_Thai",
"zho_Hans",
"deu_Latn",
"yor_Latn",
"dan_Latn",
"heb_Hebr",
"hun_Latn",
"ita_Latn",
"khm_Khmr",
"msa_Latn",
"nld_Latn",
"nob_Latn",
"pol_Latn",
"por_Latn",
"swe_Latn",
"tur_Latn",
"vie_Latn",
"zho_Hant",
],
open_source=True,
revision="953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e",
release_date="2024-06-24",
)
Loading
Loading