Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dataset/update climate fever #1873

Open
wants to merge 3 commits into
base: main
Choose a base branch
from

Conversation

mina-parham
Copy link

@mina-parham mina-parham commented Jan 25, 2025

This PR has been created related to the following issue, which updates the ClimateFEVER dataset:

Closes #1498 (comment)

I tried to use the same metadata as the original ClimateFEVER class, but while running the test, I got an error related to some metadata fields needing to be filled in. We need to review and ensure these fields are correct.

I ran the tests locally, and nothing broke related to the code I added. However, before making my changes, the tests already failed in 7 parts related to other parts of the codebase. These failures seem unrelated to the changes introduced in this PR.

Also the following are the results related to paraphrase-multilingual-MiniLM-L12-v2

{'test': [{'ndcg_at_1': 0.21368,
   'ndcg_at_3': 0.18424,
   'ndcg_at_5': 0.18343,
   'ndcg_at_10': 0.2273,
   'ndcg_at_20': 0.26617,
   'ndcg_at_100': 0.33216,
   'ndcg_at_1000': 0.38438,
   'map_at_1': 0.05607,
   'map_at_3': 0.10247,
   'map_at_5': 0.12562,
   'map_at_10': 0.1504,
   'map_at_20': 0.16521,
   'map_at_100': 0.1794,
   'map_at_1000': 0.18304,
   'recall_at_1': 0.05607,
   'recall_at_3': 0.13024,
   'recall_at_5': 0.18484,
   'recall_at_10': 0.27878,
   'recall_at_20': 0.38471,
   'recall_at_100': 0.62575,
   'recall_at_1000': 0.90718,
   'precision_at_1': 0.22997,
   'precision_at_3': 0.17416,
   'precision_at_5': 0.1458,
   'precision_at_10': 0.10697,
   'precision_at_20': 0.07244,
   'precision_at_100': 0.02403,
   'precision_at_1000': 0.00353,
   'mrr_at_1': 0.22996742671009773,
   'mrr_at_3': 0.29391965255157404,
   'mrr_at_5': 0.3111834961997822,
   'mrr_at_10': 0.32628612791479217,
   'mrr_at_20': 0.3352755299726383,
   'mrr_at_100': 0.33967423313252554,
   'mrr_at_1000': 0.3401334410242214,
   'nauc_ndcg_at_1_max': np.float64(-0.0019234851874547624),
   'nauc_ndcg_at_1_std': np.float64(0.015845014332759703),
   'nauc_ndcg_at_1_diff1': np.float64(0.1602888604282906),
   'nauc_ndcg_at_3_max': np.float64(0.006504475396564762),
   'nauc_ndcg_at_3_std': np.float64(0.019252832669093754),
   'nauc_ndcg_at_3_diff1': np.float64(0.15930909924117406),
   'nauc_ndcg_at_5_max': np.float64(0.02789195207464064),
   'nauc_ndcg_at_5_std': np.float64(0.04525851173767934),
   'nauc_ndcg_at_5_diff1': np.float64(0.14963391837900944),
   'nauc_ndcg_at_10_max': np.float64(0.04165608690052415),
   'nauc_ndcg_at_10_std': np.float64(0.06497707335457095),
   'nauc_ndcg_at_10_diff1': np.float64(0.14367742699605052),
   'nauc_ndcg_at_20_max': np.float64(0.0499609558950235),
   'nauc_ndcg_at_20_std': np.float64(0.0930850566174989),
   'nauc_ndcg_at_20_diff1': np.float64(0.14062762711781499),
   'nauc_ndcg_at_100_max': np.float64(0.03679505342422458),
   'nauc_ndcg_at_100_std': np.float64(0.10921307979333825),
   'nauc_ndcg_at_100_diff1': np.float64(0.13739073361698195),
   'nauc_ndcg_at_1000_max': np.float64(-0.0029603215313893996),
   'nauc_ndcg_at_1000_std': np.float64(0.06220708428717415),
   'nauc_ndcg_at_1000_diff1': np.float64(0.12703641622493242),
   'nauc_map_at_1_max': np.float64(0.06585674375394879),
   'nauc_map_at_1_std': np.float64(0.03387621145079985),
   'nauc_map_at_1_diff1': np.float64(0.13870026707847363),
   'nauc_map_at_3_max': np.float64(0.05209072027992851),
   'nauc_map_at_3_std': np.float64(0.02500661099875313),
   'nauc_map_at_3_diff1': np.float64(0.15204324685496393),
   'nauc_map_at_5_max': np.float64(0.041590262268235),
   'nauc_map_at_5_std': np.float64(0.04323790717333005),
   'nauc_map_at_5_diff1': np.float64(0.14869449966766685),
   'nauc_map_at_10_max': np.float64(0.04966941967456139),
   'nauc_map_at_10_std': np.float64(0.06206853068958281),
   'nauc_map_at_10_diff1': np.float64(0.14548773934093587),
   'nauc_map_at_20_max': np.float64(0.05081575210496686),
   'nauc_map_at_20_std': np.float64(0.07478139737770217),
   'nauc_map_at_20_diff1': np.float64(0.14463361708594288),
   'nauc_map_at_100_max': np.float64(0.0498499256284044),
   'nauc_map_at_100_std': np.float64(0.08403376312172636),
   'nauc_map_at_100_diff1': np.float64(0.1436296737376477),
   'nauc_map_at_1000_max': np.float64(0.04728458570811444),
   'nauc_map_at_1000_std': np.float64(0.08139368738857587),
   'nauc_map_at_1000_diff1': np.float64(0.14265262401070744),
   'nauc_recall_at_1_max': np.float64(0.06585674375394879),
   'nauc_recall_at_1_std': np.float64(0.03387621145079985),
   'nauc_recall_at_1_diff1': np.float64(0.13870026707847363),
   'nauc_recall_at_3_max': np.float64(0.059476696920827195),
   'nauc_recall_at_3_std': np.float64(0.034443636834688846),
   'nauc_recall_at_3_diff1': np.float64(0.1558645713498114),
   'nauc_recall_at_5_max': np.float64(0.05746914402960373),
   'nauc_recall_at_5_std': np.float64(0.06894288259734185),
   'nauc_recall_at_5_diff1': np.float64(0.1416913575737667),
   'nauc_recall_at_10_max': np.float64(0.08738775270123154),
   'nauc_recall_at_10_std': np.float64(0.10191968500526576),
   'nauc_recall_at_10_diff1': np.float64(0.11678198599293008),
   'nauc_recall_at_20_max': np.float64(0.11122722651805075),
   'nauc_recall_at_20_std': np.float64(0.1668044754001878),
   'nauc_recall_at_20_diff1': np.float64(0.1048694737943809),
   'nauc_recall_at_100_max': np.float64(0.10468943557246045),
   'nauc_recall_at_100_std': np.float64(0.23738724902466038),
   'nauc_recall_at_100_diff1': np.float64(0.0991202980837292),
   'nauc_recall_at_1000_max': np.float64(-0.1459649841610364),
   'nauc_recall_at_1000_std': np.float64(0.022700530929968727),
   'nauc_recall_at_1000_diff1': np.float64(-0.030751585189625525),
   'nauc_precision_at_1_max': np.float64(0.008642308953872736),
   'nauc_precision_at_1_std': np.float64(0.022085659624854568),
   'nauc_precision_at_1_diff1': np.float64(0.15871292733793976),
   'nauc_precision_at_3_max': np.float64(9.266309504084029e-05),
   'nauc_precision_at_3_std': np.float64(0.030200788846920713),
   'nauc_precision_at_3_diff1': np.float64(0.15154340257956853),
   'nauc_precision_at_5_max': np.float64(-0.015248230715225491),
   'nauc_precision_at_5_std': np.float64(0.04899655942318418),
   'nauc_precision_at_5_diff1': np.float64(0.13680027114060297),
   'nauc_precision_at_10_max': np.float64(-0.010456492896417638),
   'nauc_precision_at_10_std': np.float64(0.06916217658440739),
   'nauc_precision_at_10_diff1': np.float64(0.12333331677082864),
   'nauc_precision_at_20_max': np.float64(-0.005590771090966164),
   'nauc_precision_at_20_std': np.float64(0.10436389158796387),
   'nauc_precision_at_20_diff1': np.float64(0.11178770693212199),
   'nauc_precision_at_100_max': np.float64(-0.08343459183959545),
   'nauc_precision_at_100_std': np.float64(0.09685864745479719),
   'nauc_precision_at_100_diff1': np.float64(0.08680619210270112),
   'nauc_precision_at_1000_max': np.float64(-0.33324270531865396),
   'nauc_precision_at_1000_std': np.float64(-0.1538931809392369),
   'nauc_precision_at_1000_diff1': np.float64(-0.015206965982458742),
   'nauc_mrr_at_1_max': np.float64(0.008642308953872736),
   'nauc_mrr_at_1_std': np.float64(0.022085659624854568),
   'nauc_mrr_at_1_diff1': np.float64(0.15871292733793976),
   'nauc_mrr_at_3_max': np.float64(0.011133929851962262),
   'nauc_mrr_at_3_std': np.float64(0.03964160402051868),
   'nauc_mrr_at_3_diff1': np.float64(0.15374210241883887),
   'nauc_mrr_at_5_max': np.float64(0.010706625350049776),
   'nauc_mrr_at_5_std': np.float64(0.042068832957823064),
   'nauc_mrr_at_5_diff1': np.float64(0.14946749699691358),
   'nauc_mrr_at_10_max': np.float64(0.010918895262789627),
   'nauc_mrr_at_10_std': np.float64(0.0407928429615466),
   'nauc_mrr_at_10_diff1': np.float64(0.1449392386351715),
   'nauc_mrr_at_20_max': np.float64(0.011238584254940794),
   'nauc_mrr_at_20_std': np.float64(0.04312959809739289),
   'nauc_mrr_at_20_diff1': np.float64(0.14513578582729145),
   'nauc_mrr_at_100_max': np.float64(0.009403376648689244),
   'nauc_mrr_at_100_std': np.float64(0.041305620748898826),
   'nauc_mrr_at_100_diff1': np.float64(0.145356417117423),
   'nauc_mrr_at_1000_max': np.float64(0.009220267666528224),
   'nauc_mrr_at_1000_std': np.float64(0.041034758410318506),
   'nauc_mrr_at_1000_diff1': np.float64(0.1452834935310141),
   'main_score': 0.2273,
   'hf_subset': 'default',
   'languages': ['eng-Latn']}]}

model: intfloat/multilingual-e5-small

{'test': [{'ndcg_at_1': 0.20521,
   'ndcg_at_3': 0.18213,
   'ndcg_at_5': 0.18539,
   'ndcg_at_10': 0.22614,
   'ndcg_at_20': 0.26334,
   'ndcg_at_100': 0.32934,
   'ndcg_at_1000': 0.38059,
   'map_at_1': 0.0573,
   'map_at_3': 0.10438,
   'map_at_5': 0.12824,
   'map_at_10': 0.15073,
   'map_at_20': 0.16549,
   'map_at_100': 0.17949,
   'map_at_1000': 0.18305,
   'recall_at_1': 0.0573,
   'recall_at_3': 0.13216,
   'recall_at_5': 0.19063,
   'recall_at_10': 0.27633,
   'recall_at_20': 0.37623,
   'recall_at_100': 0.62208,
   'recall_at_1000': 0.89304,
   'precision_at_1': 0.22215,
   'precision_at_3': 0.17112,
   'precision_at_5': 0.14736,
   'precision_at_10': 0.10638,
   'precision_at_20': 0.07179,
   'precision_at_100': 0.02357,
   'precision_at_1000': 0.00347,
   'mrr_at_1': 0.2221498371335505,
   'mrr_at_3': 0.2854505971769811,
   'mrr_at_5': 0.30717698154180156,
   'mrr_at_10': 0.3221725867328468,
   'mrr_at_20': 0.3301374406338547,
   'mrr_at_100': 0.33493775099686235,
   'mrr_at_1000': 0.3353161636491783,
   'nauc_ndcg_at_1_max': np.float64(0.036197356402233455),
   'nauc_ndcg_at_1_std': np.float64(0.04306869469336829),
   'nauc_ndcg_at_1_diff1': np.float64(0.06354828563153381),
   'nauc_ndcg_at_3_max': np.float64(0.05744633906772305),
   'nauc_ndcg_at_3_std': np.float64(0.05356132400288305),
   'nauc_ndcg_at_3_diff1': np.float64(0.06652974968759166),
   'nauc_ndcg_at_5_max': np.float64(0.09032225896135936),
   'nauc_ndcg_at_5_std': np.float64(0.08197675899288988),
   'nauc_ndcg_at_5_diff1': np.float64(0.07322651282330493),
   'nauc_ndcg_at_10_max': np.float64(0.10250939800228867),
   'nauc_ndcg_at_10_std': np.float64(0.10704476459144112),
   'nauc_ndcg_at_10_diff1': np.float64(0.08699029288022454),
   'nauc_ndcg_at_20_max': np.float64(0.11424453190796985),
   'nauc_ndcg_at_20_std': np.float64(0.1303291218541926),
   'nauc_ndcg_at_20_diff1': np.float64(0.08618226712016512),
   'nauc_ndcg_at_100_max': np.float64(0.11747650492629069),
   'nauc_ndcg_at_100_std': np.float64(0.15105782405090826),
   'nauc_ndcg_at_100_diff1': np.float64(0.08089023982075633),
   'nauc_ndcg_at_1000_max': np.float64(0.06437973732216404),
   'nauc_ndcg_at_1000_std': np.float64(0.09880612768668198),
   'nauc_ndcg_at_1000_diff1': np.float64(0.06802567754850719),
   'nauc_map_at_1_max': np.float64(0.06027785225283198),
   'nauc_map_at_1_std': np.float64(0.05495794539106963),
   'nauc_map_at_1_diff1': np.float64(0.06050059257000751),
   'nauc_map_at_3_max': np.float64(0.09022855263038915),
   'nauc_map_at_3_std': np.float64(0.07431817390646686),
   'nauc_map_at_3_diff1': np.float64(0.07472514116361355),
   'nauc_map_at_5_max': np.float64(0.10304203687640019),
   'nauc_map_at_5_std': np.float64(0.08508387421619124),
   'nauc_map_at_5_diff1': np.float64(0.08219406594334867),
   'nauc_map_at_10_max': np.float64(0.11361626422942277),
   'nauc_map_at_10_std': np.float64(0.108433143501649),
   'nauc_map_at_10_diff1': np.float64(0.0938199344474812),
   'nauc_map_at_20_max': np.float64(0.11694883735377425),
   'nauc_map_at_20_std': np.float64(0.12357791141880775),
   'nauc_map_at_20_diff1': np.float64(0.09140405808287454),
   'nauc_map_at_100_max': np.float64(0.11887266872456236),
   'nauc_map_at_100_std': np.float64(0.1331045335054451),
   'nauc_map_at_100_diff1': np.float64(0.08956314186533343),
   'nauc_map_at_1000_max': np.float64(0.11512001385020777),
   'nauc_map_at_1000_std': np.float64(0.12993879110043752),
   'nauc_map_at_1000_diff1': np.float64(0.08862737171868612),
   'nauc_recall_at_1_max': np.float64(0.06027785225283198),
   'nauc_recall_at_1_std': np.float64(0.05495794539106963),
   'nauc_recall_at_1_diff1': np.float64(0.06050059257000751),
   'nauc_recall_at_3_max': np.float64(0.1080100751086333),
   'nauc_recall_at_3_std': np.float64(0.08488275402041916),
   'nauc_recall_at_3_diff1': np.float64(0.07132204337540524),
   'nauc_recall_at_5_max': np.float64(0.13798833890249398),
   'nauc_recall_at_5_std': np.float64(0.11099970870969147),
   'nauc_recall_at_5_diff1': np.float64(0.0815563473939471),
   'nauc_recall_at_10_max': np.float64(0.15707044398340275),
   'nauc_recall_at_10_std': np.float64(0.14984486583696252),
   'nauc_recall_at_10_diff1': np.float64(0.1054729250200018),
   'nauc_recall_at_20_max': np.float64(0.186436730437142),
   'nauc_recall_at_20_std': np.float64(0.19991341052425027),
   'nauc_recall_at_20_diff1': np.float64(0.10275699317641636),
   'nauc_recall_at_100_max': np.float64(0.23123173243694364),
   'nauc_recall_at_100_std': np.float64(0.28284580915512664),
   'nauc_recall_at_100_diff1': np.float64(0.08923044738404862),
   'nauc_recall_at_1000_max': np.float64(-0.03548465676751121),
   'nauc_recall_at_1000_std': np.float64(0.06090303693913847),
   'nauc_recall_at_1000_diff1': np.float64(0.01258392812478064),
   'nauc_precision_at_1_max': np.float64(0.034595588449677805),
   'nauc_precision_at_1_std': np.float64(0.04660977944123649),
   'nauc_precision_at_1_diff1': np.float64(0.06358950960459754),
   'nauc_precision_at_3_max': np.float64(0.05312879891269882),
   'nauc_precision_at_3_std': np.float64(0.05147445243648432),
   'nauc_precision_at_3_diff1': np.float64(0.07246658202046051),
   'nauc_precision_at_5_max': np.float64(0.056131850923910646),
   'nauc_precision_at_5_std': np.float64(0.0720250181043127),
   'nauc_precision_at_5_diff1': np.float64(0.06614849098085035),
   'nauc_precision_at_10_max': np.float64(0.056207028892006336),
   'nauc_precision_at_10_std': np.float64(0.11227590211304779),
   'nauc_precision_at_10_diff1': np.float64(0.07297911681668362),
   'nauc_precision_at_20_max': np.float64(0.04877820864839892),
   'nauc_precision_at_20_std': np.float64(0.13326655971187326),
   'nauc_precision_at_20_diff1': np.float64(0.06034685456352835),
   'nauc_precision_at_100_max': np.float64(0.004128751821027512),
   'nauc_precision_at_100_std': np.float64(0.13046795252943222),
   'nauc_precision_at_100_diff1': np.float64(0.027258512610983304),
   'nauc_precision_at_1000_max': np.float64(-0.2950027510827786),
   'nauc_precision_at_1000_std': np.float64(-0.13827913584450302),
   'nauc_precision_at_1000_diff1': np.float64(-0.06353493578423805),
   'nauc_mrr_at_1_max': np.float64(0.034595588449677805),
   'nauc_mrr_at_1_std': np.float64(0.04660977944123649),
   'nauc_mrr_at_1_diff1': np.float64(0.06358950960459754),
   'nauc_mrr_at_3_max': np.float64(0.041772779737535994),
   'nauc_mrr_at_3_std': np.float64(0.05352988767326582),
   'nauc_mrr_at_3_diff1': np.float64(0.06272347806616227),
   'nauc_mrr_at_5_max': np.float64(0.043263442270575665),
   'nauc_mrr_at_5_std': np.float64(0.061024579036635204),
   'nauc_mrr_at_5_diff1': np.float64(0.059956072655078886),
   'nauc_mrr_at_10_max': np.float64(0.03946858686167938),
   'nauc_mrr_at_10_std': np.float64(0.060853714901655157),
   'nauc_mrr_at_10_diff1': np.float64(0.05970475432202936),
   'nauc_mrr_at_20_max': np.float64(0.041461076284007754),
   'nauc_mrr_at_20_std': np.float64(0.060231765065109424),
   'nauc_mrr_at_20_diff1': np.float64(0.06037500455982566),
   'nauc_mrr_at_100_max': np.float64(0.040206382196548526),
   'nauc_mrr_at_100_std': np.float64(0.05942815516881157),
   'nauc_mrr_at_100_diff1': np.float64(0.06036567216562132),
   'nauc_mrr_at_1000_max': np.float64(0.039907615693334675),
   'nauc_mrr_at_1000_std': np.float64(0.05911620014933184),
   'nauc_mrr_at_1000_diff1': np.float64(0.06027514387810212),
   'main_score': 0.22614,
   'hf_subset': 'default',
   'languages': ['eng-Latn']}]}

Checklist

  • Run tests locally to make sure nothing is broken using make test.
  • Run the formatter to format the code using make lint.

Adding datasets checklist

Reason for dataset addition: ...

The reason for updating this dataset is explained here:

#1498 (comment)

  • I have run the following models on the task (adding the results to the pr). These can be run using the mteb -m {model_name} -t {task_name} command.
    • sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    • intfloat/multilingual-e5-small
  • I have checked that the performance is neither trivial (both models gain close to perfect scores) nor random (both models gain close to random scores).
  • If the dataset is too big (e.g. >2048 examples), considering using self.stratified_subsampling() under dataset_transform()
  • I have filled out the metadata object in the dataset file (find documentation on it here).
  • Run tests locally to make sure nothing is broken using make test.
  • Run the formatter to format the code using make lint.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Investigate/Fix ClimateFever
1 participant