Releases: eneural-net/eneural_net_dart
Releases · eneural-net/eneural_net_dart
v1.2.0
v1.1.3
- `ANN`: - Added `toJson`, `toJsonMap` and `fromJson`. - `Layer`: - Added `toJson`, `toJsonMap` and `fromJson`. - `ActivationFunction`: - Added `toJson`, `toJsonMap`, `fromJson` and `byName`. - `Scale`: - Added `format`. - Added `toJson`, `toJsonMap` and `fromJson`. - `Signal`: - Added `format` and `fromFormat`. - Optimize `values` implementation for each format. - `Propagation` remove unused `_layersPreviousGradientsDeltas`. - Extension `ListExtension`: - Added `asDoubles` and `asInts`.
v1.1.2
v1.1.1
- `ActivationFunction`: - Added base class `ActivationFunctionFloat32x4`. - SIMD Optimization: - Improved performance in 2x. - `ActivationFunctionLinear`, `ActivationFunctionSigmoid`, `ActivationFunctionSigmoidFast`, `ActivationFunctionSigmoidBoundedFast`. - `eneural_net_fast_math.dart`: - `exp`: Improved performance and input range bounded to -87..87. - `expFloat32x4`: new SIMD Optimized Exponential function. - `Chronometer`: - Improved `toString` numbers. - `Comparable`. - operator `+`. - `eneural_net_extensions`: - Improved extensions. - Improved documentation. - `Training`: - Added `logProgressEnabled`. - intl: ^0.17.0
v1.1.0
- `ActivationFunction`: - Added field `flatSpot` for `derivativeEntryWithFlatSpot()`. - Added `ActivationFunctionLinear`. - `ActivationFunctionSigmoid`: activation with bounds (-700 .. 700). - Improved collections and numeric extensions. - Improved `DataStatistics` and add `CSV` generator. - `Signal`: - Added SIMD related operations. - Added: `computeSumSquaresMean`, `computeSumSquares`, `valuesAsDouble`. - Set extra values (out of length range): `setExtraValuesToZero`, `setExtraValuesToOne`, `setExtraValues`. - Improved documentation. - `Sample`: - Input/Output statistics and proximity. - Added `SamplesSet`: - With per set computed `defaultTargetGlobalError`. - Automatic `removeConflicts`. - `Training`: - Split into `Propagation` and `ParameterStrategy`, allowing other algorithms. - Added `Backpropagation` with SIMD, smart learning rate and smart momentum. - Added `iRprop+`. - Added `TrainingLogger`. - Added `selectInitialANN`. - `ANN`: - Optional bias neuron. - Allow different `ActivationFunction` for each layer.