Skip to content

Commit

Permalink
move by_residual to IndexIVF (#2870)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: #2870

Factor by_residual for all the IndexIVF inheritors.
Some training code can be put in IndexIVF and `train_residual` is replaced with `train_encoder`.

This will be used for the IndependentQuantizer work.

Reviewed By: alexanderguzhva

Differential Revision: D45987304

fbshipit-source-id: 7310a687b556b2faa15a76456b1d9000e21b58ce
  • Loading branch information
mdouze authored and facebook-github-bot committed May 23, 2023
1 parent 1c1879b commit fd09e51
Show file tree
Hide file tree
Showing 29 changed files with 224 additions and 269 deletions.
11 changes: 11 additions & 0 deletions c_api/IndexIVF_c.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -165,6 +165,17 @@ void faiss_IndexIVF_invlists_get_ids(
memcpy(invlist, list, list_size * sizeof(idx_t));
}

int faiss_IndexIVF_train_encoder(
FaissIndexIVF* index,
idx_t n,
const float* x,
const idx_t* assign) {
try {
reinterpret_cast<IndexIVF*>(index)->train_encoder(n, x, assign);
}
CATCH_AND_HANDLE
}

void faiss_IndexIVFStats_reset(FaissIndexIVFStats* stats) {
reinterpret_cast<IndexIVFStats*>(stats)->reset();
}
Expand Down
6 changes: 6 additions & 0 deletions c_api/IndexIVF_c.h
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,12 @@ void faiss_IndexIVF_invlists_get_ids(
size_t list_no,
idx_t* invlist);

int faiss_IndexIVF_train_encoder(
FaissIndexIVF* index,
idx_t n,
const float* x,
const idx_t* assign);

typedef struct FaissIndexIVFStats {
size_t nq; // nb of queries run
size_t nlist; // nb of inverted lists scanned
Expand Down
10 changes: 0 additions & 10 deletions c_api/IndexScalarQuantizer_c.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -110,13 +110,3 @@ int faiss_IndexIVFScalarQuantizer_add_core(
}
CATCH_AND_HANDLE
}

int faiss_IndexIVFScalarQuantizer_train_residual(
FaissIndexIVFScalarQuantizer* index,
idx_t n,
const float* x) {
try {
reinterpret_cast<IndexIVFScalarQuantizer*>(index)->train_residual(n, x);
}
CATCH_AND_HANDLE
}
5 changes: 0 additions & 5 deletions c_api/IndexScalarQuantizer_c.h
Original file line number Diff line number Diff line change
Expand Up @@ -88,11 +88,6 @@ int faiss_IndexIVFScalarQuantizer_add_core(
const idx_t* xids,
const idx_t* precomputed_idx);

int faiss_IndexIVFScalarQuantizer_train_residual(
FaissIndexIVFScalarQuantizer* index,
idx_t n,
const float* x);

#ifdef __cplusplus
}
#endif
Expand Down
42 changes: 36 additions & 6 deletions faiss/IndexIVF.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1061,22 +1061,52 @@ void IndexIVF::update_vectors(int n, const idx_t* new_ids, const float* x) {
}

void IndexIVF::train(idx_t n, const float* x) {
if (verbose)
if (verbose) {
printf("Training level-1 quantizer\n");
}

train_q1(n, x, verbose, metric_type);

if (verbose)
if (verbose) {
printf("Training IVF residual\n");
}

// optional subsampling
idx_t max_nt = train_encoder_num_vectors();
if (max_nt <= 0) {
max_nt = (size_t)1 << 35;
}

TransformedVectors tv(
x, fvecs_maybe_subsample(d, (size_t*)&n, max_nt, x, verbose));

if (by_residual) {
std::vector<idx_t> assign(n);
quantizer->assign(n, tv.x, assign.data());

std::vector<float> residuals(n * d);
quantizer->compute_residual_n(n, tv.x, residuals.data(), assign.data());

train_encoder(n, residuals.data(), assign.data());
} else {
train_encoder(n, tv.x, nullptr);
}

train_residual(n, x);
is_trained = true;
}

void IndexIVF::train_residual(idx_t /*n*/, const float* /*x*/) {
if (verbose)
printf("IndexIVF: no residual training\n");
idx_t IndexIVF::train_encoder_num_vectors() const {
return 0;
}

void IndexIVF::train_encoder(
idx_t /*n*/,
const float* /*x*/,
const idx_t* assign) {
// does nothing by default
if (verbose) {
printf("IndexIVF: no residual training\n");
}
}

bool check_compatible_for_merge_expensive_check = true;
Expand Down
19 changes: 15 additions & 4 deletions faiss/IndexIVF.h
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,7 @@ struct IndexIVF : Index, IndexIVFInterface {
bool own_invlists = false;

size_t code_size = 0; ///< code size per vector in bytes

/** Parallel mode determines how queries are parallelized with OpenMP
*
* 0 (default): split over queries
Expand All @@ -194,6 +195,10 @@ struct IndexIVF : Index, IndexIVFInterface {
* enables reconstruct() */
DirectMap direct_map;

/// do the codes in the invlists encode the vectors relative to the
/// centroids?
bool by_residual = true;

/** The Inverted file takes a quantizer (an Index) on input,
* which implements the function mapping a vector to a list
* identifier.
Expand All @@ -207,7 +212,7 @@ struct IndexIVF : Index, IndexIVFInterface {

void reset() override;

/// Trains the quantizer and calls train_residual to train sub-quantizers
/// Trains the quantizer and calls train_encoder to train sub-quantizers
void train(idx_t n, const float* x) override;

/// Calls add_with_ids with NULL ids
Expand Down Expand Up @@ -252,9 +257,15 @@ struct IndexIVF : Index, IndexIVFInterface {
*/
void add_sa_codes(idx_t n, const uint8_t* codes, const idx_t* xids);

/// Sub-classes that encode the residuals can train their encoders here
/// does nothing by default
virtual void train_residual(idx_t n, const float* x);
/** Train the encoder for the vectors.
*
* If by_residual then it is called with residuals and corresponding assign
* array, otherwise x is the raw training vectors and assign=nullptr */
virtual void train_encoder(idx_t n, const float* x, const idx_t* assign);

/// can be redefined by subclasses to indicate how many training vectors
/// they need
virtual idx_t train_encoder_num_vectors() const;

void search_preassigned(
idx_t n,
Expand Down
26 changes: 8 additions & 18 deletions faiss/IndexIVFAdditiveQuantizer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,30 +37,20 @@ IndexIVFAdditiveQuantizer::IndexIVFAdditiveQuantizer(
IndexIVFAdditiveQuantizer::IndexIVFAdditiveQuantizer(AdditiveQuantizer* aq)
: IndexIVF(), aq(aq) {}

void IndexIVFAdditiveQuantizer::train_residual(idx_t n, const float* x) {
const float* x_in = x;
void IndexIVFAdditiveQuantizer::train_encoder(
idx_t n,
const float* x,
const idx_t* assign) {
aq->train(n, x);
}

idx_t IndexIVFAdditiveQuantizer::train_encoder_num_vectors() const {
size_t max_train_points = 1024 * ((size_t)1 << aq->nbits[0]);
// we need more data to train LSQ
if (dynamic_cast<LocalSearchQuantizer*>(aq)) {
max_train_points = 1024 * aq->M * ((size_t)1 << aq->nbits[0]);
}

x = fvecs_maybe_subsample(
d, (size_t*)&n, max_train_points, x, verbose, 1234);
ScopeDeleter<float> del_x(x_in == x ? nullptr : x);

if (by_residual) {
std::vector<idx_t> idx(n);
quantizer->assign(n, x, idx.data());

std::vector<float> residuals(n * d);
quantizer->compute_residual_n(n, x, residuals.data(), idx.data());

aq->train(n, residuals.data());
} else {
aq->train(n, x);
}
return max_train_points;
}

void IndexIVFAdditiveQuantizer::encode_vectors(
Expand Down
5 changes: 3 additions & 2 deletions faiss/IndexIVFAdditiveQuantizer.h
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,6 @@ namespace faiss {
struct IndexIVFAdditiveQuantizer : IndexIVF {
// the quantizer
AdditiveQuantizer* aq;
bool by_residual = true;
int use_precomputed_table = 0; // for future use

using Search_type_t = AdditiveQuantizer::Search_type_t;
Expand All @@ -40,7 +39,9 @@ struct IndexIVFAdditiveQuantizer : IndexIVF {

explicit IndexIVFAdditiveQuantizer(AdditiveQuantizer* aq);

void train_residual(idx_t n, const float* x) override;
void train_encoder(idx_t n, const float* x, const idx_t* assign) override;

idx_t train_encoder_num_vectors() const override;

void encode_vectors(
idx_t n,
Expand Down
46 changes: 10 additions & 36 deletions faiss/IndexIVFAdditiveQuantizerFastScan.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -131,45 +131,20 @@ IndexIVFAdditiveQuantizerFastScan::~IndexIVFAdditiveQuantizerFastScan() {}
* Training
*********************************************************/

void IndexIVFAdditiveQuantizerFastScan::train_residual(
idx_t IndexIVFAdditiveQuantizerFastScan::train_encoder_num_vectors() const {
return max_train_points;
}

void IndexIVFAdditiveQuantizerFastScan::train_encoder(
idx_t n,
const float* x_in) {
const float* x,
const idx_t* assign) {
if (aq->is_trained) {
return;
}

const int seed = 0x12345;
size_t nt = n;
const float* x = fvecs_maybe_subsample(
d, &nt, max_train_points, x_in, verbose, seed);
n = nt;
if (verbose) {
printf("training additive quantizer on %zd vectors\n", nt);
}
aq->verbose = verbose;

std::unique_ptr<float[]> del_x;
if (x != x_in) {
del_x.reset((float*)x);
}

const float* trainset;
std::vector<float> residuals(n * d);
std::vector<idx_t> assign(n);

if (by_residual) {
if (verbose) {
printf("computing residuals\n");
}
quantizer->assign(n, x, assign.data());
residuals.resize(n * d);
for (idx_t i = 0; i < n; i++) {
quantizer->compute_residual(
x + i * d, residuals.data() + i * d, assign[i]);
}
trainset = residuals.data();
} else {
trainset = x;
printf("training additive quantizer on %d vectors\n", int(n));
}

if (verbose) {
Expand All @@ -181,17 +156,16 @@ void IndexIVFAdditiveQuantizerFastScan::train_residual(
d);
}
aq->verbose = verbose;
aq->train(n, trainset);
aq->train(n, x);

// train norm quantizer
if (by_residual && metric_type == METRIC_L2) {
std::vector<float> decoded_x(n * d);
std::vector<uint8_t> x_codes(n * aq->code_size);
aq->compute_codes(residuals.data(), x_codes.data(), n);
aq->compute_codes(x, x_codes.data(), n);
aq->decode(x_codes.data(), decoded_x.data(), n);

// add coarse centroids
FAISS_THROW_IF_NOT(assign.size() == n);
std::vector<float> centroid(d);
for (idx_t i = 0; i < n; i++) {
auto xi = decoded_x.data() + i * d;
Expand Down
4 changes: 3 additions & 1 deletion faiss/IndexIVFAdditiveQuantizerFastScan.h
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,9 @@ struct IndexIVFAdditiveQuantizerFastScan : IndexIVFFastScan {
const IndexIVFAdditiveQuantizer& orig,
int bbs = 32);

void train_residual(idx_t n, const float* x) override;
void train_encoder(idx_t n, const float* x, const idx_t* assign) override;

idx_t train_encoder_num_vectors() const override;

void estimate_norm_scale(idx_t n, const float* x);

Expand Down
3 changes: 3 additions & 0 deletions faiss/IndexIVFFastScan.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -43,13 +43,16 @@ IndexIVFFastScan::IndexIVFFastScan(
size_t code_size,
MetricType metric)
: IndexIVF(quantizer, d, nlist, code_size, metric) {
// unlike other indexes, we prefer no residuals for performance reasons.
by_residual = false;
FAISS_THROW_IF_NOT(metric == METRIC_L2 || metric == METRIC_INNER_PRODUCT);
}

IndexIVFFastScan::IndexIVFFastScan() {
bbs = 0;
M2 = 0;
is_trained = false;
by_residual = false;
}

void IndexIVFFastScan::init_fastscan(
Expand Down
1 change: 0 additions & 1 deletion faiss/IndexIVFFastScan.h
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,6 @@ struct IndexIVFFastScan : IndexIVF {
int implem = 0;
// skip some parts of the computation (for timing)
int skip = 0;
bool by_residual = false;

// batching factors at search time (0 = default)
int qbs = 0;
Expand Down
7 changes: 7 additions & 0 deletions faiss/IndexIVFFlat.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,11 @@ IndexIVFFlat::IndexIVFFlat(
MetricType metric)
: IndexIVF(quantizer, d, nlist, sizeof(float) * d, metric) {
code_size = sizeof(float) * d;
by_residual = false;
}

IndexIVFFlat::IndexIVFFlat() {
by_residual = false;
}

void IndexIVFFlat::add_core(
Expand All @@ -45,6 +50,7 @@ void IndexIVFFlat::add_core(
const int64_t* coarse_idx) {
FAISS_THROW_IF_NOT(is_trained);
FAISS_THROW_IF_NOT(coarse_idx);
FAISS_THROW_IF_NOT(!by_residual);
assert(invlists);
direct_map.check_can_add(xids);

Expand Down Expand Up @@ -89,6 +95,7 @@ void IndexIVFFlat::encode_vectors(
const idx_t* list_nos,
uint8_t* codes,
bool include_listnos) const {
FAISS_THROW_IF_NOT(!by_residual);
if (!include_listnos) {
memcpy(codes, x, code_size * n);
} else {
Expand Down
2 changes: 1 addition & 1 deletion faiss/IndexIVFFlat.h
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ struct IndexIVFFlat : IndexIVF {

void sa_decode(idx_t n, const uint8_t* bytes, float* x) const override;

IndexIVFFlat() {}
IndexIVFFlat();
};

struct IndexIVFFlatDedup : IndexIVFFlat {
Expand Down
Loading

0 comments on commit fd09e51

Please sign in to comment.