This repository contains the codes for the paper Deep Residual Learning in Spiking Neural Networks. We used a identical seed during training, and we can ensure that the user can get almost the same accuracy when using our codes to train.
Some of the trained models at last epoch or max test acc1 for ImageNet and DVS Gesture are available at: https://figshare.com/articles/software/Spike-Element-Wise-ResNet/14752998. The model with max test acc1 on CIFAR10-DVS is also available at this url, which was asked by a researcher. I find it from chat transcripts and upload it to figshare. But other models of CIFAR10-DVS are missed.
We suggest to use anaconda install all packages.
Install torch>=1.5.0
by referring to:
https://pytorch.org/get-started/previous-versions/
Install tensorboard
:
pip install tensorboard
The origin codes uses a specific SpikingJelly. To maximize reproducibility, the user can download the latest SpikingJelly and rollback to the version that we used to train:
git clone https://github.com/fangwei123456/spikingjelly.git
cd spikingjelly
git reset --hard 2958519df84ad77c316c6e6fbfac96fb2e5f59a3
python setup.py install
Here is the commit information:
commit 2958519df84ad77c316c6e6fbfac96fb2e5f59a3
Author: fangwei123456 <[email protected]>
Date: Wed May 12 18:05:33 2021 +0800
Note that there is a bug in this version of SpikingJelly:
Bug: MultiStepParametricLIFNode
https://github.com/fangwei123456/spikingjelly/blob/master/bugs.md
cd imagenet
Train the Spiking ResNet-18 with zero-init:
python train.py --cos_lr_T 320 --model spiking_resnet18 -b 32 --output-dir ./logs --tb --print-freq 4096 --amp --cache-dataset --T 4 --lr 0.1 --epoch 320 --data-path /raid/wfang/imagenet --device cuda:0 --zero_init_residual
Train the SEW ResNet-18:
python train.py --cos_lr_T 320 --model sew_resnet18 -b 32 --output-dir ./logs --tb --print-freq 4096 --amp --cache-dataset --connect_f ADD --T 4 --lr 0.1 --epoch 320 --data-path /raid/wfang/imagenet --device cuda:0
Train the SEW ResNet-18 with 8 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --cos_lr_T 320 --model sew_resnet18 -b 32 --output-dir ./logs --tb --print-freq 4096 --amp --cache-dataset --connect_f ADD --T 4 --lr 0.1 --epoch 320 --data-path /raid/wfang/imagenet
cd dvsgesture
Train the Spiking ResNet:
python train.py --tb --amp --output-dir ./logs --model SpikingResNet --device cuda:0 --lr-step-size 64 --epoch 192 --T_train 12 --T 16 --data-path /raid/wfang/datasets/DVS128Gesture
Train the SEW ResNet:
python train.py --tb --amp --output-dir ./logs --model SEWResNet --connect_f ADD --device cuda:0 --lr-step-size 64 --epoch 192 --T_train 12 --T 16 --data-path /raid/wfang/datasets/DVS128Gesture --lr 0.001
Train the Plain Net:
python train.py --tb --amp --output-dir ./logs --model PlainNet --device cuda:0 --lr-step-size 64 --epoch 192 --T_train 12 --T 16 --data-path /raid/wfang/datasets/DVS128Gesture
You can also use multi GPUs to train the network. But it maybe unnecessary because using 1 GPU is fast enough.
SpikingJelly has implemented SEW ResNet for ImageNet (version 0.0.0.0.12 or the latest) :
Refer to this tutorial for how to use new version of SpikingJelly to train on ImageNet:
0.0.0.0.12: https://spikingjelly.readthedocs.io/zh_CN/0.0.0.0.12/clock_driven_en/16_train_large_scale_snn.html
latest: https://spikingjelly.readthedocs.io/zh_CN/latest/activation_based_en/train_large_scale_snn.html
Here are the example codes of how to build the network:
from spikingjelly.clock_driven import neuron, surrogate, functional
from spikingjelly.clock_driven.model import sew_resnet
import torch
device = 'cpu'
T = 4
backend = 'torch' # switch to `cupy` for faster training speed
net = sew_resnet.multi_step_sew_resnet18(pretrained=False, progress=True, T=T, cnf='ADD', multi_step_neuron=neuron.MultiStepIFNode, v_threshold=1., surrogate_function=surrogate.ATan(), detach_reset=True, backend=backend)
net.to(device)
print(net)
with torch.no_grad():
x = torch.rand([T, 1, 3, 224, 224], device=device)
print(net(x).shape)
functional.reset_net(net)