Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Add vector database doc #4165

Merged
merged 3 commits into from
May 11, 2024
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
111 changes: 111 additions & 0 deletions docs/reference/alpha-vector-database.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
# [Alpha] Vector Database
**Warning**: This is an _experimental_ feature. To our knowledge, this is stable, but there are still rough edges in the experience. Contributions are welcome!

## Overview
Vector database allows user to store and retrieve embeddings. Feast provides general APIs to store and retrieve embeddings.

## Integration
Below are supported vector databases and implemented features:

| Vector Database | Retrieval | Indexing |
|-----------------|-----------|----------|
| Pgvector | [x] | [ ] |
| Elasticsearch | [ ] | [ ] |
| Milvus | [ ] | [ ] |
| Faiss | [ ] | [ ] |


## Example

See [https://github.com/feast-dev/feast-workshop/blob/rag/module_4_rag](https://github.com/feast-dev/feast-workshop/blob/rag/module_4_rag) for an example on how to use vector database.

### **Prepare offline embedding dataset**
Run the following commands to prepare the embedding dataset:
```shell
python pull_states.py
python batch_score_documents.py
```
The output will be stored in `data/city_wikipedia_summaries.csv.`

### **Initialize Feast feature store and materialize the data to the online store**
Use the feature_tore.yaml file to initialize the feature store. This will use the data as offline store, and Pgvector as online store.

```yaml
project: feast_demo_local
provider: local
registry:
registry_type: sql
path: postgresql://@localhost:5432/feast
online_store:
type: postgres
pgvector_enabled: true
vector_len: 384
host: 127.0.0.1
port: 5432
database: feast
user: ""
password: ""


offline_store:
type: file
entity_key_serialization_version: 2
```
Run the following command in terminal to apply the feature store configuration:

```shell
feast apply
```

franciscojavierarceo marked this conversation as resolved.
Show resolved Hide resolved
Note that when you run `feast apply` you are going to apply the following Feature View that we will use for retrieval later:

```python
city_embeddings_feature_view = FeatureView(
franciscojavierarceo marked this conversation as resolved.
Show resolved Hide resolved
name="city_embeddings",
entities=[item],
schema=[
Field(name="Embeddings", dtype=Array(Float32)),
],
source=source,
ttl=timedelta(hours=2),
)
```

Then run the following command in the terminal to materialize the data to the online store:

```shell
CURRENT_TIME=$(date -u +"%Y-%m-%dT%H:%M:%S")
feast materialize-incremental $CURRENT_TIME
```

### **Prepare a query embedding**
```python
from batch_score_documents import run_model, TOKENIZER, MODEL
from transformers import AutoTokenizer, AutoModel

question = "the most populous city in the U.S. state of Texas?"

tokenizer = AutoTokenizer.from_pretrained(TOKENIZER)
model = AutoModel.from_pretrained(MODEL)
query_embedding = run_model(question, tokenizer, model)
query = query_embedding.detach().cpu().numpy().tolist()[0]
```

### **Retrieve the top 5 similar documents**
First create a feature store instance, and use the `retrieve_online_documents` API to retrieve the top 5 similar documents to the specified query.

```python
from feast import FeatureStore
store = FeatureStore(repo_path=".")
features = store.retrieve_online_documents(
feature="city_embeddings:Embeddings",
query=query,
top_k=5
).to_dict()

def print_online_features(features):
for key, value in sorted(features.items()):
print(key, " : ", value)

print_online_features(features)
```
Loading