Skip to content
/ kiali Public
forked from kiali/kiali

Kiali project, observability for the Istio service mesh

License

Notifications You must be signed in to change notification settings

ferhoyos/kiali

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kiali Tweet about Kiali

Apache 2.0 license

Introduction

kiali is a management console for Istio service mesh. Kiali can be quickly installed as an Istio add-on, or trusted as a part of your production environment.

Contributing

First, check the Community section on kiali.io, which provides a brief introduction on contributing, how to report issues and request features, and how to reach us.

If you would like to make code contributions, please also check the Contribution Guide.

Getting Started

The target audience of this README are developers. If you are not a developer but want to learn more about Kiali, the Kiali documentation should be more helpful. For instructions on installing Kiali, please read the Installation page.

How and where Kiali is released?

Read the RELEASING.adoc file.

Developer setup

Make sure you have the following tools:

  • The Go Programming Language

    • Currently, Kiali releases are built using a specific minimum version of Go as declared in the Makefile. Although Kiali may build correctly using other versions of Go, it’s suggested to use the version that the Makefile uses for your own development to ensure replicatable builds.

  • git

  • gcc

  • Docker or Podman

    • If you are using podman declare the environment variable DORP=podman.

  • NodeJS (Node.js >= 20 with the NPM command)

  • Yarn

  • The GNU make utility or any of it’s alternatives

Once you have the required developer tools, you can get and build the code with the following script:

# Checkout the source code
mkdir kiali_sources
cd kiali_sources
export KIALI_SOURCES=$(pwd)

git clone https://github.com/kiali/kiali.git
git clone https://github.com/kiali/kiali-operator.git
git clone https://github.com/kiali/helm-charts.git

ln -s $KIALI_SOURCES/kiali-operator kiali/operator

# Build the back-end and run the tests
cd $KIALI_SOURCES/kiali
make build test

# You can pass go test flags through the GO_TEST_FLAGS env var
# make -e GO_TEST_FLAGS="-race -v -run=\"TestCanConnectToIstiodReachable\"" test

# Build the front-end and run the tests
make build-ui-test
Note
The rest of this README assumes the directory tree created by the previous commands:
-- kiali_sources
   |- kiali
   |- kiali-operator
   \- helm-charts

Create a Kubernetes cluster and install a Service Mesh

Since Kiali is a management console for an Istio-based service mesh, you will need an Istio-like Service Mesh to try Kiali. Then, Istio Meshes are installed on Kubernetes clusters.

We provide a few unsupported scripts that can help to get started:

  • You can use the crc-openshift.sh script to create an OpenShift cluster on your local machine.

  • If you are familiar to minikube, you may try the k8s-minikube.sh script. It has the option to install Dex which is useful if you want to test with OpenID.

  • You can also use kind, run start-kind.sh script to create a single node KinD cluster with metallb enabled for testing Kiali against a real environment.

  • Finally, the install-istio-via-istioctl.sh and the install-bookinfo-demo.sh scripts can assist into installing Istio and the Bookinfo sample application in your cluster, respectively. You can try running these scripts without any arguments.

These scripts are written to rely on the minimum dependencies as possible and will try to download any required tools.

Depending on the type of cluster you are using, you should define the CLUSTER_TYPE environment variable on your shell to openshift (this is the default if not set), minikube or kind value so that the Makefiles can assist in other operations. If you are not using any of these clusters, you should set the environment variable to CLUSTER_TYPE=local.

Note
If you are using minikube it’s recommended that you enable the registry and ingress add-on. The k8s-minikube.sh script should do this for you.
Note
If you are using docker and using minikube’s registry add-on or any custom non-secure registry, make sure the Docker daemon is properly configured to use your registry.

Building the Container Image and deploying to a cluster

Assuming that:

  • you have successfully built the back-end and the front-end,

  • you also have created a Kubernetes cluster with an Istio-based Service Mesh installed on it,

  • and you are not using the CLUSTER_TYPE=local environment variable

the following commands should deploy a development build of Kiali to the cluster:

cd $KIALI_SOURCES/kiali

# Build the Kiali-server and Kiali-operator container images and push them to the cluster
make cluster-push

# If you want to only build and push the Kiali-server container images:
# make cluster-push-kiali

# If you want to only build and push the Kiali-operator container images:
# make cluster-push-operator

# Deploy the operator to the cluster
make operator-create

# Create a KialCR to instruct the operator to deploy Kiali
make kiali-create

If you are using the CLUSTER_TYPE=local environment variable, you will need to declare some additional environment variables to set the container registry where container images should be pushed and use make container-push* targets instead of cluster-push* targets. For example, if your container registry is localhost:5000:

export QUAY_NAME=localhost:5000/kiali/kiali
export CONTAINER_NAME=localhost:5000/kiali/kiali
export OPERATOR_QUAY_NAME=localhost:5000/kiali/kiali-operator
export OPERATOR_CONTAINER_NAME=localhost:5000/kiali/kiali-operator

cd $KIALI_SOURCES/kiali

# Build the Kiali-server and Kiali-operator container images and push them to the cluster
make container-build container-push

# If you want to only build and push the Kiali-server container images:
# make container-build-kiali container-push-kiali-quay

# If you want to only build and push the Kiali-operator container images:
# make container-build-operator container-push-operator-quay

# Deploy the operator to the cluster
make operator-create

# Create a KialCR to instruct the operator to deploy Kiali
make kiali-create

Reloading Kiali image

If you already have Kiali installed and you want to recreate the kiali server pod, you can run the following command:

cd $KIALI_SOURCES/kiali
make kiali-reload-image

This is to facilitate development. To quickly build a new Kiali container image and load it to the cluster, you can run:

cd $KIALI_SOURCES/kiali/frontend
yarn && yarn build

cd $KIALI_SOURCES/kiali
make clean build cluster-push-kiali kiali-reload-image
Note
There is no equivalent reload command for the operator. You would need to manually reload the operator via kubectl or oc commands.

Cluster clean-up

cd $KIALI_SOURCES/kiali

# Delete the Kiali CR to let the operator remove Kiali.
make kiali-delete

# If the previous command never ends, the following command forces removal by bypassing the operator
# make kiali-purge

# Remove the operator
# NOTE: After this completes, the `kiali-create` and `kiali-delete` targets will be ineffective
# until you run the `operator-create` target to re-deploy the Kiali operator again.
make operator-delete

Code formatting and linting

If you are changing the back-end code of Kiali, before submitting a pull request make sure your changes are properly formatted and no new linting issues are introduced by running:

# CD to the back-end source code
cd $KIALI_SOURCES/kiali

# Install linting tools
make lint-install

# Format the code and run linters
make format lint

Enable tracing

Kiali itself is instrumented with opentelemetry tracing to help provide insights and surface performance issues for the kiali server. To enable, set the server.observability.tracing.enabled and server.observability.tracing.collector_url configuration options.

apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:
  name: kiali
spec:
...
  server:
    observability:
      tracing:
        collector_url: http://jaeger-collector.istio-system:14268/api/traces
        enabled: true
...

Running Standalone

You may want to run Kiali outside of any cluster environment for debugging purposes. To do this, you will want to use the run-kiali.sh hack script located in the hack directory. See the --help output for the options you can set. The default configuration it uses is found in the config template file also located in the hack directory. Read the comments at the tops of both files for more details.

cd $KIALI_SOURCES/kiali/hack
./run-kiali.sh

Running integration tests

There are two sets of integration tests. The first are backend tests that test the Kiali API directly. These can be found at backend tests. The second are frontend Cypress tests that test Kiali through the browser. These can be found at frontend tests.

Both tests are run as part of the CI pipeline. If you’d like to run these same tests locally, you can use this script to setup your local environment and run the integration tests. Or these tests can be run against any live environment that meets the following requirements.

Requirements: - Istio - Kiali - bookinfo demo app - error rates demo app

You can use this script to install all the neccessary demo apps for testing. The script supports both openshift and non-openshift deployments.

# If you are doing frontend development, start the frontend development server, where `<kiali-url>` is the URL to the base Kiali UI location such as `http://localhost:20001/kiali`:
make -e YARN_START_URL=http://<kiali-url> yarn-start

# Start the cypress tests. The tests will run against the frontend development server by default.
# Otherwise you can pass a custom url with env vars:
#
# make -e CYPRESS_BASE_URL=http://<kiali-url> cypress-gui
make cypress-gui

Note that make cypress-gui runs the Cypress GUI that allows you to pick which individual tests to run. To run the entire test suite in headless mode, use the make target cypress-run instead.

Debugging Server Backend

VisualStudio Code

If you are using VisualStudio Code, you can install the following launcher.json that is then used to launch the Kiali Server in the debugger. Run the hack/run-kiali.sh script first to ensure the proper services are up (such as the Prometheus port-forward proxy).

{
    // To use this, first run "hack/run-kiali.sh --tmp-root-dir $HOME/tmp --enable-server false"
    // Pass in --help to that hack script for details on more options.
    "version": "0.2.0",
    "configurations": [
        {
            "name": "Launch Kiali to use hack script services",
            "type": "go",
            "request": "launch",
            "mode": "debug",
            "program": "${workspaceRoot}/kiali.go",
            "cwd": "${env:HOME}/tmp/run-kiali",
            "args": ["-config", "${env:HOME}/tmp/run-kiali/run-kiali-config.yaml"],
            "env": {
                "KUBERNETES_SERVICE_HOST": "127.0.0.1",
                "KUBERNETES_SERVICE_PORT": "8001",
                "LOG_LEVEL": "trace"
            }
        }
    ]
}

Debugging GUI Frontend

You can debug the Kiali GUI directly inside of Google Chrome using the Chrome Developer Tools or using VisualStudio Code.

In order to use either one, you first must perform some initial steps.

First, run the Kiali Server backend, either normally within a cluster or via run-kiali.sh as explained earlier. Determine what the Kiali URL is before moving to the next step. For example, if you run Kiali in minikube, and you set up a port-forward that exposes it, the URL to remember will be http://localhost:20001/kiali.

Second, run the GUI frontend using make: make -e YARN_START_URL=<kiali-url> yarn-start where <kiali-url> is the URL you determined from the previous step. You may need to also pass -e PORT=3001 to override the default port where the yarn server will listen to (the default is 3000 which will conflict with Grafana if you started the Kiali Server via run-kiali.sh). Some examples:

  • If the Kiali Server is running in minikube with a port-forward exposing it, then run make -e YARN_START_URL=http://localhost:20001/kiali yarn-start.

  • If the Kiali Server is running in OpenShift with the usual Kiali Route exposing it, then run make -e YARN_START_URL=https://<Kiali-OpenShift-Route-IP>/ yarn-start.

  • If the Kiali Server is running locally via run-kiali.sh, then run make -e YARN_START_URL=http://localhost:20001/kiali -e PORT=3001 yarn-start.

The yarn-start make command will start the Kiali GUI frontend on a local endpoint - when it is ready, look at the output for the "Local" URL you use to access it. The output will look something like this:

Compiled successfully!

You can now view @kiali/kiali-ui in the browser.

  Local:            http://localhost:3001
  On Your Network:  http://192.168.1.15:3001
...

At this point, you can begin to set up your debugger tool of choice - see the next sections.

Google Chrome Developer Tools

Start Google Chrome and point the browser to the local URL for the Kiali GUI frontend started by yarn-start (in the example above, that will be http://localhost:3001).

In Google Chrome, open the Developer Tools. You can press F12 or Control-Shift-I to do this.

Within the Developer Tools, navigate to the Sources tab, then the Filesystem sub-tab, and press the + Add folder to workspace link. In the file selection dialog, select your Kiali frontend/src folder. This will inform Developer Tools where your Kiali GUI frontend source code can be found.

At this point, you need to give Google Chrome permission to access your local source code folder. Towards the top of the browser window, you will see a prompt - press the "Allow" button to give Chrome the necessary permissions it needs.

You are now ready to debug the Kiali Server frontend. You can set breakpoints, inspect variables, examine stack traces, etc. just as you can do with any typical debugging tool.

VisualStudio Code

If you are using VisualStudio Code, you can install the following launcher.json that is then used to launch Google Chrome to debug the Kiali Server GUI frontend in the debugger. The url setting is the local URL of the yarn-start server - make sure you use the one appropriate for your environment.

{
    "version": "0.2.0",
    "configurations": [
        {
            "name": "Launch Chrome",
            "type": "chrome",
            "request": "launch",
            "url": "http://localhost:3001",
            "webRoot": "${workspaceFolder}"
        }
    ]
}

Configuration

Many configuration settings can optionally be set within the Kiali Operator custom resource (CR) file. See this example Kiali CR file that has all the configuration settings documented.

Embedding Kiali

If you want to embed Kiali in other applications, Kiali offers a simple feature called Kiosk mode. In this mode, Kiali won’t show the main header, nor the main navigation bar.

To enable Kiosk mode, you only need to add a kiosk=<platform_id> URL parameter. You will need to use the full path of the page you want to embed. For example, assuming that you access Kiali through HTTPS:

  • To embed the Overview page, use https://kiali_path/overview?kiosk=console.

  • To embed the Graph page, use https://kiali_path/graph/namespaces?kiosk=console.

  • To embed the Applications list page, use https://kiali_path/applications?kiosk=console.

If the page you want to embed uses other URL arguments, you can specify any of them to preset options. For example, if you want to embed the graph of the bookinfo namespace, use the following URL: http://kiali_path/graph/namespaces?namespaces=bookinfo&kiosk=console.

<platform_id> value in the kiosk URL parameter will be used in future use cases to add conditional logic on embedded use cases, for now, any non empty value will enable the kiosk mode.

Configure External Services

Grafana

If you have Grafana installed in a custom way that is not easily auto-detectable by Kiali, you need to change in the Kiali CR the value of the grafana > url

apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:
  name: kiali
spec:
...
    external_services:
      grafana:
        url: http://grafana-istio-system.127.0.0.1.nip.io
...

Additional Notes

Frontend development guidelines

Frontend development guidelines (styles, i18n, etc.) can be found here

Upgrading Go

The Kiali project will periodically upgrade to a newer version of Go. These are the steps that need to be performed in order for the Kiali build to use a different version of Go:

  1. Run go mod edit -go=x.y where "x" and "y" are the major/minor versions of the Go version being used.

  2. Run go mod tidy -v

  3. Run make clean build build-ui test to ensure everything builds correctly. If any problems occur, obviously you must fix them.

  4. Commit the changes to your working branch, create a PR, and make sure everything builds and works before merging the PR.

The Makefile and some Github Actions will check the go version from the go.mod file.

Procedure to check and update patternfly versions

  1. Launch command npx npm-check-updates -t latest -f '/^@patternfly/'

  2. Launch yarn install to update the yarn.lock

  3. Add to the commit package.json and yarn.lock

Running the UI outside the cluster

When developing the Kiali UI you will find it useful to run it outside of the cluster to make it easier to update the UI code and see the changes without having to re-deploy. The preferred approach for this is to use the proxy feature of React. The process is described here. Alternatively, you can use the make -e YARN_START_URL=<url> yarn-start command where <url> is to the Kiali backend.

Disabling SSL

In the provided OpenShift templates, SSL is turned on by default. If you want to turn it off, you should:

  • Remove the "tls: termination: reencrypt" option from the Kiali route

  • Remove the "identity" block, with certificate paths, from the Kiali Config Map.

  • Optionally you can also remove the annotation "service.beta.openshift.io/serving-cert-secret-name" in the Kiali Service, and the related kiali-cabundle volume that is declared and mounted in Kiali Deployment (but if you don’t, they will just be ignored).

Exposing Kiali to External Clients Using Istio Gateway

The operator will create a Route or Ingress by default (see the Kiali CR setting "deployment.ingress_enabled"). If you want to expose Kiali via Istio itself, you can create Gateway, Virtual Service, and Destination Rule resources similar to below:

---
apiVersion: networking.istio.io/v1
kind: Gateway
metadata:
  name: kiali-gateway
  namespace: istio-system
spec:
  selector:
    istio: ingressgateway
  servers:
  - port:
      number: 80
      name: http-kiali
      protocol: HTTP
    # https://istio.io/latest/docs/reference/config/networking/gateway/#ServerTLSSettings
    tls:
      httpsRedirect: false
    hosts: [<your-host>]
  - port:
      number: 443
      name: https-kiali
      protocol: HTTPS
    tls: {}
    hosts: [<your-host>]
...
---
apiVersion: networking.istio.io/v1
kind: VirtualService
metadata:
  name: kiali-virtualservice
  namespace: istio-system
spec:
  gateways:
  - kiali-gateway
  hosts: [<your-host>]
  http:
  - route:
    - destination:
        host: kiali.istio-system.svc.cluster.local
        port:
          number: 20001
      weight: 100
...
---
apiVersion: networking.istio.io/v1
kind: DestinationRule
metadata:
  name: kiali-destinationrule
  namespace: istio-system
spec:
  host: kiali
  trafficPolicy:
    tls:
      mode: DISABLE
...

Experimental

Observing a Remote Cluster

Note
The "Central IstioD" setup is currently named "Primary-remote" multi-cluster setup.
Warning
When this support was incorporated into Kiali, the "Central IstioD" setup of Istio was in an early development phase. These instructions are probably now broken.

There are certain use cases where Kiali needs to be deployed in one cluster (Control Plane) and observe a different cluster (Data Plane). Diagram

Follow these steps:

1: You should have the Istio with an External Control Plane setup running

2: Create the Kiali ClusterRole, ClusterRoleBinding, and ServiceAccount in the Data Plane cluster

3: Create a remote secret in the Control Plane, using the Data Plane ServiceAccount you just created. This allows the Control Plane to read from and modify the Data Plane

istioctl create-remote-secret --service-account kiali-service-account --context=$DataPlane --name kiali | kubectl apply -n istio-system --context=$ControlPlane -f -

4: You will now run Kiali in the Control Plane. You need to add the remote secret to the Kiali Deployment by specifying a Volume and VolumeMount. When Kiali sees /kiali-remote-secret/kiali it will use the remote cluster’s API server instead of the local API server

spec:
  template:
    spec:
      containers:
      - volumeMounts:
        - mountPath: /kiali-remote-secret
          name: kiali-remote-secret
      volumes:
      - name: kiali-remote-secret
        secret:
          defaultMode: 420
          optional: true
          secretName: istio-remote-secret-kiali

5: Kiali now needs the Istio metrics from the sidecars. You need to run Prometheus in the Control Plane and have it scrape the metrics from an envoyMetricsService. These metrics are required.

6: Kiali in the Control Plane should now be fully functional with the Data Plane

About

Kiali project, observability for the Istio service mesh

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • TypeScript 43.9%
  • Go 42.9%
  • Shell 9.0%
  • Gherkin 2.5%
  • Makefile 1.2%
  • SCSS 0.5%