Skip to content

Here is the source codes of our "OpenLORIS-Object: A Dataset and Benchmark towards Lifelong Object Recognition" https://arxiv.org/abs/1911.06487. Please note that this repository has moved to our official account "https://github.com/lifelong-robotic-vision/OpenLORIS-Object". Feel free to open issues and discuss.

Notifications You must be signed in to change notification settings

ffeng1996/OpenLORIS-Object-Code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OpenLORIS-Object

This is the implementation of the following paper: OpenLORIS-Object: A Dataset and Benchmark towardsLifelong Object Recognition

Requirements

The current version of the code has been tested with following libs:

  • pytorch 1.1.0
  • torchvision 0.2.1
  • tqdm
  • visdom
  • Pillow

Install the required the packages inside the virtual environment:

$ conda create -n yourenvname python=3.7 anaconda
$ source activate yourenvname
$ pip install -r requirements.txt

Data Preparation

Step 1: Download data following Google Drive.

Step 2: Run following scripts:

 python3 benchmark1.py
 python3 benchmark2.py

Step 3: Put train/test/validation file under ./img. For more details, please follow note file under each sub-directories in ./img.

Step 4: Generate the .pkl files of data.

 python3 pk_gene.py
 python3 pk_gene_sequence.py

Quickly get hands on

You can directly use scripts on 9 algorithms and 2 benchmarks (may need to modify arguments/parameters in .bash files if necessary):

bash clutter.bash
bash illumination.bash
bash pixel.bash
bash occlusion.bash
bash sequence.bash

Running Benchmark 1

Individual experiments can be run with main.py. Main option is:

python3 main.py --factor

which kind of experiment? (clutter|illumination|occlusion|pixel)

Running Benchmark 2

The main option to run benchmark2 is:

python3 main.py --factor=sequence

Running specific baseline methods

  • Elastic weight consolidation (EWC):
main.py --ewc --savepath=ewc
  • Online EWC:
main.py --ewc --online --savepath=ewconline
  • Synaptic intelligence (SI):
main.py --si --savepath=si
  • Learning without Forgetting (LwF):
main.py --replay=current --distill --savepath=lwf
  • Deep Generative Replay (DGR):
main.py --replay=generative --savepath=dgr
  • DGR with distillation:
main.py --replay=generative --distill --savepath=distilldgr
  • Replay-trough-Feedback (RtF):
main.py --replay=generative --distill --feedback --savepath=rtf
  • Cumulative:
main.py --cumulative=1 --savepath=cumulative
  • Naive:
main.py --savepath=naive

Repository Structure

OpenLORISCode 
├── img
├── lib
│   ├── callbacks.py
│   ├── continual_learner.py
│   ├── encoder.py
│   ├── exemplars.py
│   ├── replayer.py
│   ├── train.py
│   ├── vae_models.py
│   ├── visual_plt.py
├── _compare.py
├── _compare_replay.py
├── _compare_taskID.py
├── data.py
├── evaluate.py
├── excitability_modules.py
├── main.py
├── linear_nets.py
├── param_stamp.py
├── pk_gene.py
├── visual_visdom.py
├── utils.py
└── README.md

Citation

Please consider citing our papers if you use this code in your research:

@misc{1911.06487,
  Author = {Qi She and Fan Feng and Xinyue Hao and Qihan Yang and Chuanlin Lan and Vincenzo Lomonaco and Xuesong Shi and Zhengwei Wang and Yao Guo and Yimin Zhang and Fei Qiao and Rosa H. M. Chan},
  Title = {OpenLORIS-Object: A Dataset and Benchmark towards Lifelong Object Recognition},
  Year = {2019},
  Eprint = {arXiv:1911.06487},
}

Acknowledgements

Parts of code were borrowed from here.

Issue / Want to Contribute ?

Open a new issue or do a pull request in case you are facing any difficulty with the code base or if you want to contribute.

About

Here is the source codes of our "OpenLORIS-Object: A Dataset and Benchmark towards Lifelong Object Recognition" https://arxiv.org/abs/1911.06487. Please note that this repository has moved to our official account "https://github.com/lifelong-robotic-vision/OpenLORIS-Object". Feel free to open issues and discuss.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published