https://fgnt.github.io/2019_ad_xidian/
https://github.com/fgnt/2019_ad_xidian/blob/master/theory/exercise.pdf
Start a jupyter notebook server in the poolroom:
source /upb/scratch/users/c/cbj/py37/bin/activate
cd ~/ && jupyter notebook
For more details see: https://fgnt.github.io/python_crashkurs_doc/include/poolroom.html
Small numpy introduction: https://fgnt.github.io/python_crashkurs_doc/include/numpy.html Numpy cheat sheet: https://git.cs.upb.de/chthiel/python-tutorial/blob/master/cheat_sheets/Numpy_Python_Cheat_Sheet.pdf
Download the git repository
git clone https://github.com/fgnt/2019_ad_xidian.git
Now you can find in your home directory a notebook to start the exercise
(~/2019_ad_xidian/practice/ad_template.ipynb
) and a python script that contains some helper functions (~/2019_ad_xidian/practice/ad_helper.py
).
Alternative: Open https://raw.githubusercontent.com/fgnt/2019_ad_xidian/master/practice/ad_template.ipynb in a browser and safe the file.
Extend the code in jupyter notebook from the practical exercise to a full neuronal network (NN) framework and train a NN on the MNIST data. Can you reach 98% accuracy?