Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve parallelism in RoPE with pos_ids #609

Merged
merged 1 commit into from
Nov 14, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 44 additions & 48 deletions include/flashinfer/pos_enc.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -229,65 +229,61 @@ __global__ void BatchQKApplyRotaryPosIdsKernel(
float smooth_b, float rope_rcp_scale, float rope_rcp_theta) {
// NOTE: q and q_rope may be the same ptr, so do k and k_rope
uint32_t bx = blockIdx.x, tx = threadIdx.x, ty = threadIdx.y;
const uint32_t bdy = blockDim.y;
vec_t<float, vec_size> freq;

const uint32_t idx = bx * blockDim.y + ty;
const uint32_t pos_idx = idx / (num_qo_heads + num_kv_heads);
if (pos_idx >= nnz) {
return;
}

const IdType pos = pos_ids[pos_idx];

vec_t<float, vec_size> cos, sin;
if (tx * vec_size < rotary_dim) {
#pragma unroll
#pragma unroll
for (uint32_t i = 0; i < vec_size; ++i) {
float freq;
if constexpr (interleave) {
freq[i] = __powf(rope_rcp_theta, float(2 * ((tx * vec_size + i) / 2)) / float(rotary_dim));
freq = __powf(rope_rcp_theta, float(2 * ((tx * vec_size + i) / 2)) / float(rotary_dim));
} else {
freq[i] = __powf(rope_rcp_theta,
float(2 * ((tx * vec_size + i) % (rotary_dim / 2))) / float(rotary_dim));
freq = __powf(rope_rcp_theta,
float(2 * ((tx * vec_size + i) % (rotary_dim / 2))) / float(rotary_dim));
}

float smooth = freq[i] * smooth_a + smooth_b;
float smooth = freq * smooth_a + smooth_b;
smooth = max(0.0f, min(1.0f, smooth)); // clamp to [0, 1]
freq[i] = (1 - smooth) * (freq[i] * rope_rcp_scale) + smooth * freq[i];
}
}

vec_t<float, vec_size> cos, sin;
freq = (1 - smooth) * (freq * rope_rcp_scale) + smooth * freq;

if (bx * bdy + ty < nnz) {
const uint32_t idx = bx * bdy + ty;
const IdType pos = pos_ids[idx];

if (tx * vec_size < rotary_dim) {
#pragma unroll
for (uint32_t i = 0; i < vec_size; ++i) {
float embed = float(pos) * freq[i];
__sincosf(embed, &sin[i], &cos[i]);
}
const float embed = float(pos) * freq;
__sincosf(embed, &sin[i], &cos[i]);
}
}

#pragma unroll 1
for (uint32_t qo_head_idx = 0; qo_head_idx < num_qo_heads; ++qo_head_idx) {
DType* q_ptr = q + get_elem_offset_impl(idx, qo_head_idx, 0, q_stride_n, q_stride_h);
DType* q_rope_ptr =
q_rope + get_elem_offset_impl(idx, qo_head_idx, 0, q_rope_stride_n, q_rope_stride_h);
vec_t<float, vec_size> q_vec;
if constexpr (interleave) {
q_vec = vec_apply_llama_rope_cos_sin_interleave<vec_size, bdx>(q_ptr, cos, sin, rotary_dim);
} else {
q_vec = vec_apply_llama_rope_cos_sin<vec_size, bdx>(q_ptr, cos, sin, rotary_dim);
}
q_vec.cast_store(q_rope_ptr + tx * vec_size);
const uint32_t head_idx = idx % (num_qo_heads + num_kv_heads);
if (head_idx < num_qo_heads) {
const uint32_t qo_head_idx = head_idx;
DType* q_ptr = q + get_elem_offset_impl(pos_idx, qo_head_idx, 0, q_stride_n, q_stride_h);
DType* q_rope_ptr =
q_rope + get_elem_offset_impl(pos_idx, qo_head_idx, 0, q_rope_stride_n, q_rope_stride_h);
vec_t<float, vec_size> q_vec;
if constexpr (interleave) {
q_vec = vec_apply_llama_rope_cos_sin_interleave<vec_size, bdx>(q_ptr, cos, sin, rotary_dim);
} else {
q_vec = vec_apply_llama_rope_cos_sin<vec_size, bdx>(q_ptr, cos, sin, rotary_dim);
}

#pragma unroll 1
for (uint32_t kv_head_idx = 0; kv_head_idx < num_kv_heads; ++kv_head_idx) {
DType* k_ptr = k + get_elem_offset_impl(idx, kv_head_idx, 0, k_stride_n, k_stride_h);
DType* k_rope_ptr =
k_rope + get_elem_offset_impl(idx, kv_head_idx, 0, k_rope_stride_n, k_rope_stride_h);
vec_t<float, vec_size> k_vec;
if constexpr (interleave) {
k_vec = vec_apply_llama_rope_cos_sin_interleave<vec_size, bdx>(k_ptr, cos, sin, rotary_dim);
} else {
k_vec = vec_apply_llama_rope_cos_sin<vec_size, bdx>(k_ptr, cos, sin, rotary_dim);
}
k_vec.cast_store(k_rope_ptr + tx * vec_size);
q_vec.cast_store(q_rope_ptr + tx * vec_size);
} else {
const uint32_t kv_head_idx = head_idx - num_qo_heads;
DType* k_ptr = k + get_elem_offset_impl(pos_idx, kv_head_idx, 0, k_stride_n, k_stride_h);
DType* k_rope_ptr =
k_rope + get_elem_offset_impl(pos_idx, kv_head_idx, 0, k_rope_stride_n, k_rope_stride_h);
vec_t<float, vec_size> k_vec;
if constexpr (interleave) {
k_vec = vec_apply_llama_rope_cos_sin_interleave<vec_size, bdx>(k_ptr, cos, sin, rotary_dim);
} else {
k_vec = vec_apply_llama_rope_cos_sin<vec_size, bdx>(k_ptr, cos, sin, rotary_dim);
}
k_vec.cast_store(k_rope_ptr + tx * vec_size);
}
}

Expand Down Expand Up @@ -610,7 +606,7 @@ cudaError_t BatchQKApplyLlama31RotaryPosIds(
constexpr uint32_t bdx = HEAD_DIM / vec_size;
uint32_t num_threads = std::max(128U, bdx);
uint32_t bdy = num_threads / bdx;
dim3 nblks((nnz + bdy - 1) / bdy);
dim3 nblks((nnz + bdy - 1) / bdy * (num_qo_heads + num_kv_heads));
dim3 nthrs(bdx, bdy);
auto kernel =
BatchQKApplyRotaryPosIdsKernel<INTERLEAVE, HEAD_DIM, vec_size, bdx, DType, IdType>;
Expand Down