forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Adreno] Add global pooling schedule (apache#13573)
* [Adreno] Add global pooling schedule The parallelizm opportuninties in case of global pooling are limited by number of channels, need to change schedule to have parallelizm by reduction axis/use rfactor * address pylint hits * address PR comments * switch spatial axis to blk binding
- Loading branch information
1 parent
b447022
commit b1437c9
Showing
3 changed files
with
249 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
import tvm | ||
from tvm import relay | ||
from utils.adreno_utils import build_run_compare | ||
|
||
|
||
dtype = tvm.testing.parameter("float32") | ||
|
||
|
||
@tvm.testing.requires_opencl | ||
@tvm.testing.parametrize_targets("opencl -device=adreno") | ||
def test_global_pool2d_nchw_wide(remote, target, dtype): | ||
""" | ||
Use case of NCHW global pooling with big spatial valies | ||
""" | ||
input_shape = (1, 32, 160, 160) | ||
A = relay.var("data", shape=input_shape, dtype=dtype) | ||
C = relay.nn.global_avg_pool2d(A) | ||
mod = relay.Function([A], C) | ||
|
||
build_run_compare(remote, mod, {}, {"data": input_shape}, {"data": dtype}, target) | ||
|
||
|
||
@tvm.testing.requires_opencl | ||
@tvm.testing.parametrize_targets("opencl -device=adreno") | ||
def test_global_pool2d_nchw4c_wide(remote, target, dtype): | ||
""" | ||
Use case of blocked NCHW4c global pooling with big spatial valies | ||
""" | ||
input_shape = (1, 8, 160, 160, 4) | ||
A = relay.var("data", shape=input_shape, dtype=dtype) | ||
C = relay.nn.global_avg_pool2d(A, layout="NCHW4c") | ||
mod = relay.Function([A], C) | ||
|
||
build_run_compare(remote, mod, {}, {"data": input_shape}, {"data": dtype}, target) | ||
|
||
|
||
@tvm.testing.requires_opencl | ||
@tvm.testing.parametrize_targets("opencl -device=adreno") | ||
def test_global_pool2d_nchw_deep(remote, target, dtype): | ||
""" | ||
Use case of NCHW deep global pooling | ||
""" | ||
input_shape = (1, 2048, 20, 20) | ||
A = relay.var("data", shape=input_shape, dtype=dtype) | ||
C = relay.nn.global_avg_pool2d(A) | ||
mod = relay.Function([A], C) | ||
|
||
build_run_compare(remote, mod, {}, {"data": input_shape}, {"data": dtype}, target) | ||
|
||
|
||
@tvm.testing.requires_opencl | ||
@tvm.testing.parametrize_targets("opencl -device=adreno") | ||
def test_global_pool2d_nchw4c_deep(remote, target, dtype): | ||
""" | ||
Use case of blocked NCHW4c deep global pooling | ||
""" | ||
input_shape = (1, 512, 20, 20, 4) | ||
A = relay.var("data", shape=input_shape, dtype=dtype) | ||
C = relay.nn.global_avg_pool2d(A, layout="NCHW4c") | ||
mod = relay.Function([A], C) | ||
|
||
build_run_compare(remote, mod, {}, {"data": input_shape}, {"data": dtype}, target) | ||
|
||
|
||
@tvm.testing.requires_opencl | ||
@tvm.testing.parametrize_targets("opencl -device=adreno") | ||
def test_global_pool2d_nhwc(remote, target, dtype): | ||
""" | ||
Use case of NHWC global pooling with big spatial valies | ||
""" | ||
input_shape = (1, 160, 160, 32) | ||
A = relay.var("data", shape=input_shape, dtype=dtype) | ||
C = relay.nn.global_avg_pool2d(A, layout="NHWC") | ||
mod = relay.Function([A], C) | ||
|
||
build_run_compare(remote, mod, {}, {"data": input_shape}, {"data": dtype}, target) | ||
|
||
|
||
@tvm.testing.requires_opencl | ||
@tvm.testing.parametrize_targets("opencl -device=adreno") | ||
def test_global_pool2d_nhwc4c(remote, target, dtype): | ||
""" | ||
Use case of NHWC deep global pooling | ||
""" | ||
input_shape = (1, 160, 160, 8, 4) | ||
A = relay.var("data", shape=input_shape, dtype=dtype) | ||
C = relay.nn.global_avg_pool2d(A, layout="NHWC4c") | ||
mod = relay.Function([A], C) | ||
|
||
build_run_compare(remote, mod, {}, {"data": input_shape}, {"data": dtype}, target) | ||
|
||
|
||
@tvm.testing.requires_opencl | ||
@tvm.testing.parametrize_targets("opencl -device=adreno") | ||
def test_global_max_pool2d_nchw_wide(remote, target, dtype): | ||
""" | ||
Use case of NCHW global pooling with big spatial valies | ||
""" | ||
input_shape = (1, 32, 160, 160) | ||
A = relay.var("data", shape=input_shape, dtype=dtype) | ||
C = relay.nn.global_max_pool2d(A) | ||
mod = relay.Function([A], C) | ||
|
||
build_run_compare(remote, mod, {}, {"data": input_shape}, {"data": dtype}, target) | ||
|
||
|
||
@tvm.testing.requires_opencl | ||
@tvm.testing.parametrize_targets("opencl -device=adreno") | ||
def test_global_max_pool2d_nchw4c_wide(remote, target, dtype): | ||
""" | ||
Use case of blocked NCHW4c global pooling with big spatial valies | ||
""" | ||
input_shape = (1, 8, 160, 160, 4) | ||
A = relay.var("data", shape=input_shape, dtype=dtype) | ||
C = relay.nn.global_max_pool2d(A, layout="NCHW4c") | ||
mod = relay.Function([A], C) | ||
|
||
build_run_compare(remote, mod, {}, {"data": input_shape}, {"data": dtype}, target) |