Skip to content

Commit

Permalink
TRT-LLM 0.10 Update (NVIDIA#9402)
Browse files Browse the repository at this point in the history
* reorg the export code

Signed-off-by: Onur Yilmaz <[email protected]>

* Apply isort and black reformatting

Signed-off-by: oyilmaz-nvidia <[email protected]>

* replaced log with raise

Signed-off-by: Onur Yilmaz <[email protected]>

* add converter and loader folders

Signed-off-by: Onur Yilmaz <[email protected]>

* move nemo_ckpt_convert into the converter folder

Signed-off-by: Onur Yilmaz <[email protected]>

* move nemo_file into loader folder

Signed-off-by: Onur Yilmaz <[email protected]>

* reorg converter

Signed-off-by: Onur Yilmaz <[email protected]>

* Apply isort and black reformatting

Signed-off-by: oyilmaz-nvidia <[email protected]>

* continue to reorg converter

Signed-off-by: Onur Yilmaz <[email protected]>

* Apply isort and black reformatting

Signed-off-by: oyilmaz-nvidia <[email protected]>

* continue to reorg

Signed-off-by: Onur Yilmaz <[email protected]>

* move nemo file back into nemo folder

Signed-off-by: Onur Yilmaz <[email protected]>

* renamed nemo folder to nemo_ckpt_loader

Signed-off-by: Onur Yilmaz <[email protected]>

* remove unused function

Signed-off-by: Onur Yilmaz <[email protected]>

* removed nemo file

Signed-off-by: Onur Yilmaz <[email protected]>

* Apply isort and black reformatting

Signed-off-by: oyilmaz-nvidia <[email protected]>

* moved a function to tensorrt_llm_run file

Signed-off-by: Onur Yilmaz <[email protected]>

* Apply isort and black reformatting

Signed-off-by: oyilmaz-nvidia <[email protected]>

* Remove unused imports

Signed-off-by: Onur Yilmaz <[email protected]>

* Apply isort and black reformatting

Signed-off-by: oyilmaz-nvidia <[email protected]>

* import csv added

Signed-off-by: Onur Yilmaz <[email protected]>

* update the APIs

Signed-off-by: Onur Yilmaz <[email protected]>

* add use_embedding_sharing param

Signed-off-by: Onur Yilmaz <[email protected]>

* Apply isort and black reformatting

Signed-off-by: oyilmaz-nvidia <[email protected]>

* do not add unused inputs during MG export

Signed-off-by: Onur Yilmaz <[email protected]>

* Apply isort and black reformatting

Signed-off-by: oyilmaz-nvidia <[email protected]>

* add cpp runtime test

Signed-off-by: Onur Yilmaz <[email protected]>

* Apply isort and black reformatting

Signed-off-by: oyilmaz-nvidia <[email protected]>

* sharing embedding

* Remove manually scaling

* renaming to avoid nemo github issue

Signed-off-by: Onur Yilmaz <[email protected]>

---------

Signed-off-by: Onur Yilmaz <[email protected]>
Signed-off-by: oyilmaz-nvidia <[email protected]>
Signed-off-by: Onur Yilmaz <[email protected]>
Co-authored-by: oyilmaz-nvidia <[email protected]>
Co-authored-by: Bobby Chen <[email protected]>
  • Loading branch information
3 people authored and galv committed Jun 13, 2024
1 parent f2a1613 commit 0fd87ca
Show file tree
Hide file tree
Showing 6 changed files with 106 additions and 46 deletions.
10 changes: 9 additions & 1 deletion nemo/export/tensorrt_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,13 +121,15 @@ def export(
n_gpus: int = 1,
tensor_parallel_size: int = None,
pipeline_parallel_size: int = None,
gpus_per_node: int = None,
max_input_len: int = 256,
max_output_len: int = 256,
max_input_token: Optional[int] = None,
max_output_token: Optional[int] = None,
max_batch_size: int = 8,
max_prompt_embedding_table_size=None,
use_parallel_embedding: bool = False,
use_embedding_sharing: bool = False,
paged_kv_cache: bool = True,
remove_input_padding: bool = True,
dtype: str = "bfloat16",
Expand All @@ -150,13 +152,15 @@ def export(
n_gpus (int): number of GPUs to use for inference.
tensor_parallel_size (int): tensor parallelism.
pipeline_parallel_size (int): pipeline parallelism.
gpus_per_node (int): number of gpus per node.
max_input_len (int): max input length.
max_output_len (int): max output length.
max_input_token (int): max input length. Deprecated, use max_input_len instead.
max_output_token (int): max output length. Deprecated, use max_output_len instead.
max_batch_size (int): max batch size.
max_prompt_embedding_table_size (int): max prompt embedding size.
use_parallel_embedding (bool): whether to use parallel embedding feature of TRT-LLM or not
use_embedding_sharing (bool):
paged_kv_cache (bool): if True, uses kv cache feature of the TensorRT-LLM.
remove_input_padding (bool): enables removing input padding or not.
dtype (str): Floating point type for model weights (Supports BFloat16/Float16).
Expand All @@ -173,7 +177,7 @@ def export(
if model_type not in self.get_supported_models_list:
raise Exception(
"Model {0} is not currently a supported model type. "
"Supported model types are llama, gptnext, falcon, and starcoder".format(model_type)
"Supported model types are llama, gptnext, falcon, and starcoder.".format(model_type)
)

if model_type == "gpt" or model_type == "starcoder":
Expand All @@ -189,6 +193,8 @@ def export(
tensor_parallel_size = 1
pipeline_parallel_size = n_gpus

gpus_per_node = tensor_parallel_size if gpus_per_node is None else gpus_per_node

if Path(self.model_dir).exists():
if delete_existing_files and len(os.listdir(self.model_dir)) > 0:
for files in os.listdir(self.model_dir):
Expand Down Expand Up @@ -267,7 +273,9 @@ def export(
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
pipeline_parallel_size=pipeline_parallel_size,
gpus_per_node=gpus_per_node,
use_parallel_embedding=use_parallel_embedding,
use_embedding_sharing=use_embedding_sharing,
)

for weight_dict, model_config in zip(weights_dicts, model_configs):
Expand Down
36 changes: 28 additions & 8 deletions nemo/export/trt_llm/converter/model_converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,9 +72,17 @@ def model_to_trtllm_ckpt(
dtype: str = "bfloat16",
tensor_parallel_size: int = 1,
pipeline_parallel_size: int = 1,
gpus_per_node: int = None,
use_parallel_embedding: bool = False,
use_embedding_sharing: bool = False,
) -> Tuple[List[Dict], List[PretrainedConfig]]:

if nemo_model_config.get("share_embeddings_and_output_weights", False) and not use_embedding_sharing:
LOGGER.info(
"Found share_embeddings_and_output_weights is True in NeMo config, set use_embedding_sharing = True"
)
use_embedding_sharing = True

weights_dict = convert_model_to_trt_llm_ckpt(
model=model,
nemo_model_config=nemo_model_config,
Expand All @@ -88,12 +96,14 @@ def model_to_trtllm_ckpt(

world_size = tensor_parallel_size * pipeline_parallel_size

lm_head_weight = weights_dict["lm_head.weight"]
has_lm_head = "lm_head.weight" in weights_dict
if has_lm_head:
lm_head_weight = weights_dict["lm_head.weight"]

vocab_size = weights_dict["transformer.vocab_embedding.weight"].shape[0]
vocab_size_padded = pad_vocab_size(vocab_size, tensor_parallel_size)
vocab_size_padded = pad_vocab_size(vocab_size, tensor_parallel_size) if has_lm_head else vocab_size

if vocab_size_padded != vocab_size:
if has_lm_head and vocab_size_padded != vocab_size:
pad_width = vocab_size_padded - vocab_size
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)), "constant", constant_values=0)

Expand All @@ -120,7 +130,7 @@ def model_to_trtllm_ckpt(
'hidden_act': hidden_act,
'use_parallel_embedding': use_parallel_embedding,
'embedding_sharding_dim': 0,
'share_embedding_table': False,
'share_embedding_table': use_embedding_sharing,
'quantization': {
'quant_algo': None,
'kv_cache_quant_algo': None,
Expand Down Expand Up @@ -160,9 +170,15 @@ def model_to_trtllm_ckpt(
"transformer.ln_f.bias",
}

gpus_per_node = tensor_parallel_size if gpus_per_node is None else gpus_per_node

for i in range(world_size):
mapping = tensorrt_llm.Mapping(
world_size=world_size, rank=i, tp_size=tensor_parallel_size, pp_size=pipeline_parallel_size
world_size=world_size,
rank=i,
tp_size=tensor_parallel_size,
pp_size=pipeline_parallel_size,
gpus_per_node=gpus_per_node,
)
layers_range = mapping.pp_layers(num_layers)

Expand All @@ -174,6 +190,8 @@ def model_to_trtllm_ckpt(
if new_key.endswith(".bin"): # TP split
if new_key.endswith(f"{mapping.tp_rank}.bin"):
new_key = new_key.replace(f".{mapping.tp_rank}.bin", "")
else:
continue
if "layers" in new_key: # PP
layer_num = int(new_key.split(".")[2])
if layer_num in layers_range:
Expand Down Expand Up @@ -202,15 +220,17 @@ def model_to_trtllm_ckpt(
weights_dict_local["transformer.position_embedding.weight"] = pos_embedding_weight

if mapping.is_last_pp_rank():
weights_dict_local["lm_head.weight"] = np.ascontiguousarray(
split(lm_head_weight, mapping.tp_size, mapping.tp_rank)
)
if has_lm_head:
weights_dict_local["lm_head.weight"] = np.ascontiguousarray(
split(lm_head_weight, mapping.tp_size, mapping.tp_rank)
)
weights_dict_local["transformer.ln_f.weight"] = weights_dict["transformer.ln_f.weight"]

ln_f_bias = weights_dict.get("transformer.ln_f.bias")
if ln_f_bias is not None:
weights_dict_local["transformer.ln_f.bias"] = ln_f_bias

config["gpus_per_node"] = gpus_per_node
model_config = PretrainedConfig(**config)
model_config.mapping = mapping
model_configs.append(model_config)
Expand Down
6 changes: 0 additions & 6 deletions nemo/export/trt_llm/converter/model_to_trt_llm_ckpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,8 +158,6 @@ def handle_model_level_weights(model, tp_idx: int, pp_idx: int):
model_level_weights["transformer.position_embedding.weight"].append(val)
if pp_idx == 0:
val = model.get("state_dict", model)[get_layer_name("word_embedding", prefix)]
if embedding_scaling:
val = val * float(math.sqrt(hidden_size))

vocab_size = val.shape[0]
if use_parallel_embedding:
Expand All @@ -171,10 +169,6 @@ def handle_model_level_weights(model, tp_idx: int, pp_idx: int):

val = torch_to_numpy(val.to(storage_type).cpu())
model_level_weights["transformer.vocab_embedding.weight"].append(val)
if share_embeddings_and_output:
val = model.get("state_dict", model)[get_layer_name("word_embedding", prefix)]
val = torch_to_numpy(val.to(storage_type).cpu())
model_level_weights["lm_head.weight"].append(val)
if has_lm_head and pp_idx == training_pp_size - 1:
val = model.get("state_dict", model)[get_layer_name("output_layer", prefix)]
val = torch_to_numpy(val.to(storage_type).cpu())
Expand Down
4 changes: 2 additions & 2 deletions nemo/export/trt_llm/tensorrt_llm_build.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
from tensorrt_llm.builder import BuildConfig, Builder
from tensorrt_llm.commands.build import build as build_trtllm
from tensorrt_llm.logger import logger
from tensorrt_llm.lora_manager import LoraBuildConfig
from tensorrt_llm.lora_manager import LoraConfig
from tensorrt_llm.models.modeling_utils import add_lora, optimize_model, preprocess_weights
from tensorrt_llm.plugin import PluginConfig

Expand Down Expand Up @@ -94,7 +94,7 @@ def build_and_save_engine(

if use_lora_plugin is not None:
build_config.plugin_config.set_lora_plugin(use_lora_plugin)
lora_config = LoraBuildConfig(
lora_config = LoraConfig(
lora_dir=lora_ckpt_list,
lora_ckpt_source='nemo',
max_lora_rank=max_lora_rank,
Expand Down
38 changes: 38 additions & 0 deletions tests/export/test_nemo_export.py → tests/export/nemo_export.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,6 +128,7 @@ def run_trt_llm_inference(
trt_llm_model_dir,
n_gpu=1,
max_batch_size=8,
use_embedding_sharing=False,
max_input_len=128,
max_output_len=128,
ptuning=False,
Expand Down Expand Up @@ -216,6 +217,7 @@ def run_trt_llm_inference(
lora_target_modules=lora_target_modules,
max_num_tokens=int(max_input_len * max_batch_size * 0.2),
opt_num_tokens=60,
use_embedding_sharing=use_embedding_sharing,
save_nemo_model_config=True,
)

Expand All @@ -237,6 +239,14 @@ def run_trt_llm_inference(
stop_words_list=stop_words_list,
)

if not use_lora_plugin and not ptuning:
test_cpp_runtime(
engine_path=trt_llm_model_dir,
prompt=prompt,
max_output_len=max_output_len,
debug=True,
)

nq = None
nm = None
output_deployed = ""
Expand Down Expand Up @@ -290,6 +300,27 @@ def run_trt_llm_inference(
raise Exception("Checkpoint {0} could not be found.".format(checkpoint_path))


def test_cpp_runtime(
engine_path,
prompt,
max_output_len,
debug,
):
trt_llm_exporter = TensorRTLLM(engine_path, load_model=True)
output = trt_llm_exporter.forward(
input_texts=prompt,
max_output_len=max_output_len,
top_k=1,
top_p=0.0,
temperature=1.0,
)

if debug:
print("")
print("--- Output deployed with cpp runtime: ", output)
print("")


def run_existing_checkpoints(
model_name,
n_gpus,
Expand Down Expand Up @@ -332,6 +363,12 @@ def run_existing_checkpoints(
else:
raise Exception("There is not lora checkpoint path defined.")

if model_info["model_type"] == "gemma":
print("*********************")
use_embedding_sharing = True
else:
use_embedding_sharing = False

return run_trt_llm_inference(
model_name=model_name,
model_type=model_info["model_type"],
Expand All @@ -340,6 +377,7 @@ def run_existing_checkpoints(
trt_llm_model_dir=model_info["trt_llm_model_dir"],
n_gpu=n_gpus,
max_batch_size=model_info["max_batch_size"],
use_embedding_sharing=use_embedding_sharing,
max_input_len=512,
max_output_len=model_info["max_output_len"],
ptuning=ptuning,
Expand Down
58 changes: 29 additions & 29 deletions tests/export/run.sh
Original file line number Diff line number Diff line change
Expand Up @@ -20,32 +20,32 @@ for i in $(env | grep ^PMIX_ | cut -d"=" -f 1); do unset -v $i; done
set +x


python tests/export/test_nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --min_gpus 1 --max_gpus 2
python tests/export/test_nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --min_gpus 1 --streaming
python tests/export/test_nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --min_gpus 2 --tp_size 1 --pp_size 2
python tests/export/test_nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --min_gpus 4 --tp_size 2 --pp_size 2
python tests/export/test_nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --min_gpus 8 --tp_size 1 --pp_size 8
python tests/export/test_nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --ptuning --min_gpus 1 --max_gpus 2
python tests/export/test_nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --lora --min_gpus 1 --max_gpus 2
python tests/export/test_nemo_export.py --model_name LLAMA2-7B-code --existing_test_models --min_gpus 1 --max_gpus 2
python tests/export/test_nemo_export.py --model_name LLAMA2-7B-base-fp8 --existing_test_models --min_gpus 1 --max_gpus 1
python tests/export/test_nemo_export.py --model_name LLAMA2-7B-base-int4 --existing_test_models --min_gpus 1 --max_gpus 1
python tests/export/test_nemo_export.py --model_name LLAMA2-7B-base-int8 --existing_test_models --min_gpus 1 --max_gpus 1
python tests/export/test_nemo_export.py --model_name LLAMA2-13B-base --existing_test_models --min_gpus 1 --max_gpus 2
python tests/export/test_nemo_export.py --model_name LLAMA2-13B-base --existing_test_models --ptuning --min_gpus 1 --max_gpus 2
python tests/export/test_nemo_export.py --model_name LLAMA2-13B-base-fp8 --existing_test_models --min_gpus 2 --max_gpus 2
python tests/export/test_nemo_export.py --model_name LLAMA2-13B-base-int4 --existing_test_models --min_gpus 2 --max_gpus 2
python tests/export/test_nemo_export.py --model_name LLAMA2-70B-base --existing_test_models --min_gpus 2 --max_gpus 8
python tests/export/test_nemo_export.py --model_name LLAMA2-70B-base-fp8 --existing_test_models --min_gpus 8 --max_gpus 8
python tests/export/test_nemo_export.py --model_name LLAMA2-70B-base-int4 --existing_test_models --min_gpus 8 --max_gpus 8
python tests/export/test_nemo_export.py --model_name NV-GPT-8B-Base-4k --existing_test_models --min_gpus 1 --max_gpus 8
python tests/export/test_nemo_export.py --model_name NV-GPT-8B-QA-4k --existing_test_models --min_gpus 1 --max_gpus 8
python tests/export/test_nemo_export.py --model_name NV-GPT-8B-Chat-4k-SFT --existing_test_models --min_gpus 1 --max_gpus 8
python tests/export/test_nemo_export.py --model_name NV-GPT-8B-Chat-4k-RLHF --existing_test_models --min_gpus 1 --max_gpus 8
python tests/export/test_nemo_export.py --model_name NV-GPT-8B-Chat-4k-SteerLM --existing_test_models --min_gpus 1 --max_gpus 8
python tests/export/test_nemo_export.py --model_name GPT-43B-Base --existing_test_models --min_gpus 2 --max_gpus 8
python tests/export/test_nemo_export.py --model_name FALCON-7B-base --existing_test_models --min_gpus 1 --max_gpus 2
python tests/export/test_nemo_export.py --model_name FALCON-40B-base --existing_test_models --min_gpus 2 --max_gpus 8
python tests/export/test_nemo_export.py --model_name FALCON-180B-base --existing_test_models --min_gpus 8 --max_gpus 8
python tests/export/test_nemo_export.py --model_name STARCODER1-15B-base --existing_test_models --min_gpus 1 --max_gpus 1
python tests/export/test_nemo_export.py --model_name GEMMA-base --existing_test_models --min_gpus 1 --max_gpus 1
python tests/export/nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --min_gpus 1 --max_gpus 2
python tests/export/nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --min_gpus 1 --streaming
python tests/export/nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --min_gpus 2 --tp_size 1 --pp_size 2
python tests/export/nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --min_gpus 4 --tp_size 2 --pp_size 2
python tests/export/nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --min_gpus 8 --tp_size 1 --pp_size 8
python tests/export/nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --ptuning --min_gpus 1 --max_gpus 2
python tests/export/nemo_export.py --model_name LLAMA2-7B-base --existing_test_models --lora --min_gpus 1 --max_gpus 2
python tests/export/nemo_export.py --model_name LLAMA2-7B-code --existing_test_models --min_gpus 1 --max_gpus 2
python tests/export/nemo_export.py --model_name LLAMA2-7B-base-fp8 --existing_test_models --min_gpus 1 --max_gpus 1
python tests/export/nemo_export.py --model_name LLAMA2-7B-base-int4 --existing_test_models --min_gpus 1 --max_gpus 1
python tests/export/nemo_export.py --model_name LLAMA2-7B-base-int8 --existing_test_models --min_gpus 1 --max_gpus 1
python tests/export/nemo_export.py --model_name LLAMA2-13B-base --existing_test_models --min_gpus 1 --max_gpus 2
python tests/export/nemo_export.py --model_name LLAMA2-13B-base --existing_test_models --ptuning --min_gpus 1 --max_gpus 2
python tests/export/nemo_export.py --model_name LLAMA2-13B-base-fp8 --existing_test_models --min_gpus 2 --max_gpus 2
python tests/export/nemo_export.py --model_name LLAMA2-13B-base-int4 --existing_test_models --min_gpus 2 --max_gpus 2
python tests/export/nemo_export.py --model_name LLAMA2-70B-base --existing_test_models --min_gpus 2 --max_gpus 8
python tests/export/nemo_export.py --model_name LLAMA2-70B-base-fp8 --existing_test_models --min_gpus 8 --max_gpus 8
python tests/export/nemo_export.py --model_name LLAMA2-70B-base-int4 --existing_test_models --min_gpus 8 --max_gpus 8
python tests/export/nemo_export.py --model_name NV-GPT-8B-Base-4k --existing_test_models --min_gpus 1 --max_gpus 8
python tests/export/nemo_export.py --model_name NV-GPT-8B-QA-4k --existing_test_models --min_gpus 1 --max_gpus 8
python tests/export/nemo_export.py --model_name NV-GPT-8B-Chat-4k-SFT --existing_test_models --min_gpus 1 --max_gpus 8
python tests/export/nemo_export.py --model_name NV-GPT-8B-Chat-4k-RLHF --existing_test_models --min_gpus 1 --max_gpus 8
python tests/export/nemo_export.py --model_name NV-GPT-8B-Chat-4k-SteerLM --existing_test_models --min_gpus 1 --max_gpus 8
python tests/export/nemo_export.py --model_name GPT-43B-Base --existing_test_models --min_gpus 2 --max_gpus 8
python tests/export/nemo_export.py --model_name FALCON-7B-base --existing_test_models --min_gpus 1 --max_gpus 2
python tests/export/nemo_export.py --model_name FALCON-40B-base --existing_test_models --min_gpus 2 --max_gpus 8
python tests/export/nemo_export.py --model_name FALCON-180B-base --existing_test_models --min_gpus 8 --max_gpus 8
python tests/export/nemo_export.py --model_name STARCODER1-15B-base --existing_test_models --min_gpus 1 --max_gpus 1
python tests/export/nemo_export.py --model_name GEMMA-base --existing_test_models --min_gpus 1 --max_gpus 1

0 comments on commit 0fd87ca

Please sign in to comment.