forked from NVIDIA/NeMo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
In-framework deployment (NVIDIA#9438)
* initial MegatronGPTDeployable class * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * delete old comment * first draft of MegatronGPTDeployable test script * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * small cleanup of test_triton_deployable.py * move MegatronGPTDeployable into nlp folder since it is language specific * update test_triton_deployable for new MegatronGPTDeployable location * renaming NemoQueryLLM classes * MegatronGPTDeployable should programatically generate input/output fields from the relevant internal classes instead of hard-coding whenever possible * add NemoTritonQueryLLMPyTorch class and example * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * MegatronGPTModel should always load on creation, also allow number of gpus to be controlled via argument * got logprobs working, but can only process one prompt at a time * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add nemo deployable to deploy_triton.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * multigpu working, with manual torch.distributed calls * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * rename MegatronGPTDeployable to MegatronLLMDeployable * MegatronGPTDeployable->MegatronLLMDeployable rename for filenames * move torch.distributed calls inside MegatronLLMDeployable * add constructor for existing model class, tested working with Mistral7B and Nemotron3-22B * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * rename test_triton_deployable.py to tests_pytriton_deploy.py * cleanup, comments, and style guide fixes * add warning for multigpu cases where users will need to be aware of pytorch lightning DDP behavior * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixing formatting of logprob outputs * fix single gpu behavior, and add padding to outputs to allow for multi-prompt logprob calculation * Apply isort and black reformatting Signed-off-by: oyilmaz-nvidia <[email protected]> * fixing codeQL issues * Apply isort and black reformatting Signed-off-by: jukim-nv <[email protected]> * Apply isort and black reformatting Signed-off-by: oyilmaz-nvidia <[email protected]> * removed min_length definition in previous commit but forgot to remove its use * update comments and arguments in deploy/nlp/query_llm.py * Apply isort and black reformatting Signed-off-by: jukim-nv <[email protected]> * delete unused arguments from test_pytriton_deploy.py * remove some debug prints from megatronllm_deployable * rename test file due to pytest issue Signed-off-by: Onur Yilmaz <[email protected]> --------- Signed-off-by: oyilmaz-nvidia <[email protected]> Signed-off-by: jukim-nv <[email protected]> Signed-off-by: Onur Yilmaz <[email protected]> Signed-off-by: Onur Yilmaz <[email protected]> Co-authored-by: Justin Kim <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: oyilmaz-nvidia <[email protected]> Co-authored-by: jukim-nv <[email protected]> Co-authored-by: Pablo Garay <[email protected]>
- Loading branch information
1 parent
a72a0e7
commit a01fa6d
Showing
4 changed files
with
498 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,316 @@ | ||
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import logging | ||
from enum import IntEnum, auto | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import torch | ||
import wrapt | ||
from pytorch_lightning.trainer.trainer import Trainer | ||
|
||
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel | ||
from nemo.collections.nlp.modules.common.text_generation_utils import ( | ||
OutputType, | ||
get_default_length_params, | ||
get_default_sampling_params, | ||
) | ||
from nemo.collections.nlp.modules.common.transformer.text_generation import LengthParam, SamplingParam | ||
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy | ||
from nemo.deploy import ITritonDeployable | ||
from nemo.deploy.utils import cast_output, str_ndarray2list | ||
|
||
|
||
@wrapt.decorator | ||
def noop_decorator(func): | ||
def wrapper(*args, **kwargs): | ||
return func(*args, **kwargs) | ||
|
||
return wrapper | ||
|
||
|
||
use_pytriton = True | ||
batch = noop_decorator | ||
try: | ||
from pytriton.decorators import batch | ||
from pytriton.model_config import Tensor | ||
except Exception: | ||
use_pytriton = False | ||
|
||
LOGGER = logging.getLogger("NeMo") | ||
|
||
|
||
def GetTensorShape(pyvalue): | ||
""" | ||
utility function to get Triton Tensor shape from a python value | ||
assume that lists are shape -1 and all others are scalars with shape 1 | ||
""" | ||
return (-1 if type(pyvalue) == list else 1,) | ||
|
||
|
||
def GetNumpyDtype(pyvalue): | ||
""" | ||
utility function to get numpy dtype of a python value | ||
e.g. bool -> np.bool_ | ||
""" | ||
''' | ||
manually defining the mapping of python type -> numpy type for now | ||
is there a better way to do it? tried np.array(pyvalue).dtype, but that doesn't seem to work | ||
''' | ||
py_to_numpy_mapping = {str: bytes, bool: np.bool_, float: np.single, int: np.int_} | ||
python_type = type(pyvalue) | ||
# for lists, return the type of the internal elements | ||
if python_type == list: | ||
python_type = type(pyvalue[0]) | ||
numpy_type = py_to_numpy_mapping[python_type] | ||
return numpy_type | ||
|
||
|
||
class ServerSync(IntEnum): | ||
"""Enum for synchronization messages using torch.distributed""" | ||
|
||
WAIT = auto() | ||
SIGNAL = auto() | ||
|
||
def to_long_tensor(self): | ||
return torch.tensor([self], dtype=torch.long, device='cuda') | ||
|
||
|
||
class MegatronLLMDeployable(ITritonDeployable): | ||
"""Triton inference server compatible deploy class for a .nemo model file""" | ||
|
||
def __init__( | ||
self, | ||
nemo_checkpoint_filepath: str = None, | ||
num_devices: int = 1, | ||
num_nodes: int = 1, | ||
existing_model: MegatronGPTModel = None, | ||
): | ||
if nemo_checkpoint_filepath is None and existing_model is None: | ||
raise ValueError( | ||
"MegatronLLMDeployable requires either a .nemo checkpoint filepath or an existing MegatronGPTModel, but both provided were None" | ||
) | ||
if num_devices > 1: | ||
LOGGER.warning( | ||
"Creating a MegatronLLMDeployable with num_devices>1 will assume running with a PyTorch Lightning DDP-variant strategy, which will run the main script once per device. Make sure any user code is compatible with multiple executions!" | ||
) | ||
|
||
# if both existing_model and nemo_checkpoint_filepath are provided, existing_model will take precedence | ||
if existing_model is not None: | ||
self.model = existing_model | ||
else: | ||
self._load_from_nemo_checkpoint(nemo_checkpoint_filepath, num_devices, num_nodes) | ||
|
||
self.model.eval() | ||
# helper threads spawned by torch.multiprocessing should loop inside this helper function | ||
self._helper_thread_evaluation_loop() | ||
|
||
def _load_from_nemo_checkpoint(self, nemo_checkpoint_filepath: str, num_devices: int, num_nodes: int): | ||
if Path(nemo_checkpoint_filepath).exists(): | ||
trainer = Trainer( | ||
strategy=NLPDDPStrategy(), | ||
devices=num_devices, | ||
num_nodes=num_nodes, | ||
) | ||
|
||
custom_config = MegatronGPTModel.restore_from( | ||
nemo_checkpoint_filepath, trainer=trainer, return_config=True | ||
) | ||
# transformer_engine should always be true according to EricH, but GPT-2B model will fail if it is enabled | ||
custom_config.transformer_engine = True | ||
# using multi-gpu for tensor parallelism directly for now, could do pipeline parallel instead or a combination | ||
custom_config.tensor_model_parallel_size = num_devices | ||
# had to override these to make Nemotron3-22B work, see sample_sequence_batch() in text_generation_utils.py | ||
custom_config.activations_checkpoint_granularity = None | ||
custom_config.activations_checkpoint_method = None | ||
|
||
self.model = MegatronGPTModel.restore_from( | ||
nemo_checkpoint_filepath, trainer=trainer, override_config_path=custom_config | ||
) | ||
|
||
def _helper_thread_evaluation_loop(self): | ||
# only deploy the server on main thread, other threads enter this evaluation loop | ||
if torch.distributed.is_initialized() and torch.distributed.get_rank() != 0: | ||
while True: | ||
wait_value = ServerSync.WAIT.to_long_tensor() | ||
torch.distributed.broadcast(wait_value, 0) | ||
if wait_value.item() == ServerSync.SIGNAL: | ||
self.model.generate(inputs=[""], length_params=None) | ||
|
||
_INPUT_PARAMETER_FIELDS = { | ||
"prompts": (-1, bytes, False), | ||
} | ||
|
||
''' | ||
there is no get_default equivalent for OutputType like there is for SamplingParameters and LengthParameters | ||
but we still want to generate output using a real OutputType TypedDict for static type checking | ||
''' | ||
_BLANK_OUTPUTTYPE: OutputType = { | ||
'sentences': [""], | ||
'tokens': [[""]], | ||
'logprob': [[0.0]], | ||
'full_logprob': [[0.0]], | ||
'token_ids': [[0]], | ||
'offsets': [[0]], | ||
} | ||
|
||
@property | ||
def get_triton_input(self): | ||
input_parameters = tuple( | ||
Tensor(name=name, shape=(shape,), dtype=dtype, optional=optional) | ||
for name, (shape, dtype, optional) in self._INPUT_PARAMETER_FIELDS.items() | ||
) | ||
''' | ||
in theory, would like to use typedict2tensor() function to generate Tensors, but it purposely ignores 1D arrays | ||
asked JakubK why on 2024-04-26, but he doesn't know who owns the code | ||
sampling_parameters = typedict2tensor(SamplingParam) | ||
length_parameters = typedict2tensor(LengthParam) | ||
''' | ||
default_sampling_params: SamplingParam = get_default_sampling_params() | ||
sampling_parameters = tuple( | ||
Tensor( | ||
name=parameter_name, | ||
shape=GetTensorShape(parameter_value), | ||
dtype=GetNumpyDtype(parameter_value), | ||
optional=True, | ||
) | ||
for parameter_name, parameter_value in default_sampling_params.items() | ||
) | ||
default_length_params: LengthParam = get_default_length_params() | ||
length_parameters = tuple( | ||
Tensor( | ||
name=parameter_name, | ||
shape=GetTensorShape(parameter_value), | ||
dtype=GetNumpyDtype(parameter_value), | ||
optional=True, | ||
) | ||
for parameter_name, parameter_value in default_length_params.items() | ||
) | ||
|
||
inputs = input_parameters + sampling_parameters + length_parameters | ||
return inputs | ||
|
||
@property | ||
def get_triton_output(self): | ||
# outputs are defined by the fields of OutputType | ||
outputs = [ | ||
Tensor( | ||
name=parameter_name, | ||
shape=GetTensorShape(parameter_value), | ||
dtype=GetNumpyDtype(parameter_value[0]), | ||
) | ||
for parameter_name, parameter_value in MegatronLLMDeployable._BLANK_OUTPUTTYPE.items() | ||
] | ||
return outputs | ||
|
||
@staticmethod | ||
def _sampling_params_from_triton_inputs(**inputs: np.ndarray): | ||
"""Extract SamplingParam fields from triton input dict""" | ||
sampling_params: SamplingParam = get_default_sampling_params() | ||
for sampling_param_field in sampling_params.keys(): | ||
if sampling_param_field in inputs: | ||
sampling_params[sampling_param_field] = inputs.pop(sampling_param_field)[0][0] | ||
return sampling_params | ||
|
||
@staticmethod | ||
def _length_params_from_triton_inputs(**inputs: np.ndarray): | ||
"""Extract LengthParam fields from triton input dict""" | ||
length_params: LengthParam = get_default_length_params() | ||
for length_param_field in length_params.keys(): | ||
if length_param_field in inputs: | ||
length_params[length_param_field] = inputs.pop(length_param_field)[0][0] | ||
return length_params | ||
|
||
@batch | ||
def triton_infer_fn(self, **inputs: np.ndarray): | ||
"""Triton server inference function that actually runs the model""" | ||
if torch.distributed.is_initialized(): | ||
distributed_rank = torch.distributed.get_rank() | ||
if distributed_rank != 0: | ||
raise ValueError( | ||
f"Triton inference function should not be called on a thread with torch.distributed rank != 0, but this thread is rank {distributed_rank}" | ||
) | ||
signal_value = ServerSync.SIGNAL.to_long_tensor() | ||
torch.distributed.broadcast(signal_value, 0) | ||
|
||
input_strings = str_ndarray2list(inputs.pop("prompts")) | ||
sampling_params = self._sampling_params_from_triton_inputs(**inputs) | ||
length_params = self._length_params_from_triton_inputs(**inputs) | ||
|
||
model_output = self.model.generate( | ||
inputs=input_strings, length_params=length_params, sampling_params=sampling_params | ||
) | ||
''' | ||
model_output['sentences'] will be a list of strings (one per prompt) | ||
other fields will either be a list of lists (tokens, for example) | ||
or a list of pytorch Tensor | ||
''' | ||
|
||
triton_output = {} | ||
_OUTPUT_FILLER_VALUES = { | ||
'tokens': "", | ||
'logprob': 0.0, | ||
'full_logprob': 0.0, | ||
'token_ids': -1, | ||
'offsets': -1, | ||
} | ||
for model_output_field, value in model_output.items(): | ||
|
||
if model_output_field != 'sentences' and value is not None: | ||
# find length of longest non-sentence output item | ||
field_longest_output_item = 0 | ||
for item in value: | ||
field_longest_output_item = max(field_longest_output_item, len(item)) | ||
# then pad shorter items to match this length | ||
for index, item in enumerate(value): | ||
num_pad_values = field_longest_output_item - len(item) | ||
if num_pad_values > 0: | ||
pad_value = _OUTPUT_FILLER_VALUES[model_output_field] | ||
if isinstance(item, torch.Tensor): | ||
pad_tensor = torch.full( | ||
(num_pad_values, item.size(1)) if item.dim() > 1 else (num_pad_values,), | ||
pad_value, | ||
dtype=item.dtype, | ||
device='cuda', | ||
) | ||
padded_item = torch.cat((item, pad_tensor)) | ||
value[index] = padded_item | ||
else: | ||
pad_list = [pad_value] * num_pad_values | ||
padded_item = item + pad_list | ||
value[index] = padded_item | ||
|
||
field_dtype = GetNumpyDtype(MegatronLLMDeployable._BLANK_OUTPUTTYPE[model_output_field][0]) | ||
if value is None: | ||
# triton does not allow for optional output parameters, so need to populate them if they don't exist | ||
triton_output[model_output_field] = np.full( | ||
# 'sentences' should always have a valid value, so use that for the output shape | ||
np.shape(model_output['sentences']), | ||
MegatronLLMDeployable._BLANK_OUTPUTTYPE[model_output_field][0], | ||
dtype=field_dtype, | ||
) | ||
elif field_dtype == bytes: | ||
# strings are cast to bytes | ||
triton_output[model_output_field] = cast_output(value, field_dtype) | ||
elif isinstance(value[0], torch.Tensor): | ||
if value[0].dtype == torch.bfloat16: | ||
# numpy currently does not support bfloat16, so need to manually convert it | ||
triton_output[model_output_field] = np.array([tensor.cpu().float().numpy() for tensor in value]) | ||
else: | ||
triton_output[model_output_field] = np.array([tensor.cpu().numpy() for tensor in value]) | ||
else: | ||
# non-strings are output as-is (in numpy format) | ||
triton_output[model_output_field] = np.array(value) | ||
return triton_output |
Oops, something went wrong.