forked from NVIDIA/NeMo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Initial attempt at making a python backend for parakeet CTC
- Loading branch information
Showing
2 changed files
with
267 additions
and
0 deletions.
There are no files selected for viewing
210 changes: 210 additions & 0 deletions
210
examples/asr/triton-inference-server/asr_ctc/model_repo/asr_ctc/1/model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
from collections import namedtuple | ||
import json | ||
import sys | ||
import time | ||
|
||
import numpy as np | ||
|
||
import torch | ||
from torch.utils.dlpack import from_dlpack | ||
|
||
import multiprocessing | ||
|
||
from riva.asrlib.decoder.python_decoder import ( | ||
BatchedMappedDecoderCuda, | ||
BatchedMappedDecoderCudaConfig, | ||
BatchedMappedOnlineDecoderCuda, | ||
BatchedMappedOnlineDecoderCudaConfig, | ||
) | ||
|
||
import triton_python_backend_utils as pb_utils | ||
|
||
class TritonPythonModel: | ||
"""Your Python model must use the same class name. Every Python model | ||
that is created must have "TritonPythonModel" as the class name. | ||
""" | ||
|
||
@staticmethod | ||
def auto_complete_config(auto_complete_model_config): | ||
"""`auto_complete_config` is called only once when loading the model | ||
assuming the server was not started with | ||
`--disable-auto-complete-config`. Implementing this function is | ||
optional. No implementation of `auto_complete_config` will do nothing. | ||
This function can be used to set `max_batch_size`, `input` and `output` | ||
properties of the model using `set_max_batch_size`, `add_input`, and | ||
`add_output`. These properties will allow Triton to load the model with | ||
minimal model configuration in absence of a configuration file. This | ||
function returns the `pb_utils.ModelConfig` object with these | ||
properties. You can use the `as_dict` function to gain read-only access | ||
to the `pb_utils.ModelConfig` object. The `pb_utils.ModelConfig` object | ||
being returned from here will be used as the final configuration for | ||
the model. | ||
Note: The Python interpreter used to invoke this function will be | ||
destroyed upon returning from this function and as a result none of the | ||
objects created here will be available in the `initialize`, `execute`, | ||
or `finalize` functions. | ||
Parameters | ||
---------- | ||
auto_complete_model_config : pb_utils.ModelConfig | ||
An object containing the existing model configuration. You can build | ||
upon the configuration given by this object when setting the | ||
properties for this model. | ||
Returns | ||
------- | ||
pb_utils.ModelConfig | ||
An object containing the auto-completed model configuration | ||
""" | ||
# inputs = [{ | ||
# 'name': 'INPUT0', | ||
# 'data_type': 'TYPE_FP32', | ||
# 'dims': [4] | ||
# }, { | ||
# 'name': 'INPUT1', | ||
# 'data_type': 'TYPE_FP32', | ||
# 'dims': [4] | ||
# }] | ||
# outputs = [{ | ||
# 'name': 'OUTPUT0', | ||
# 'data_type': 'TYPE_FP32', | ||
# 'dims': [4] | ||
# }, { | ||
# 'name': 'OUTPUT1', | ||
# 'data_type': 'TYPE_FP32', | ||
# 'dims': [4] | ||
# }] | ||
|
||
# # Demonstrate the usage of `as_dict`, `add_input`, `add_output`, | ||
# # `set_max_batch_size`, and `set_dynamic_batching` functions. | ||
# # Store the model configuration as a dictionary. | ||
# config = auto_complete_model_config.as_dict() | ||
# input_names = [] | ||
# output_names = [] | ||
# for input in config['input']: | ||
# input_names.append(input['name']) | ||
# for output in config['output']: | ||
# output_names.append(output['name']) | ||
|
||
# for input in inputs: | ||
# # The name checking here is only for demonstrating the usage of | ||
# # `as_dict` function. `add_input` will check for conflicts and | ||
# # raise errors if an input with the same name already exists in | ||
# # the configuration but has different data_type or dims property. | ||
# if input['name'] not in input_names: | ||
# auto_complete_model_config.add_input(input) | ||
# for output in outputs: | ||
# # The name checking here is only for demonstrating the usage of | ||
# # `as_dict` function. `add_output` will check for conflicts and | ||
# # raise errors if an output with the same name already exists in | ||
# # the configuration but has different data_type or dims property. | ||
# if output['name'] not in output_names: | ||
# auto_complete_model_config.add_output(output) | ||
|
||
# auto_complete_model_config.set_max_batch_size(0) | ||
|
||
# It would be interesting if | ||
|
||
# To enable a dynamic batcher with default settings, you can use | ||
# auto_complete_model_config set_dynamic_batching() function. It is | ||
# commented in this example because the max_batch_size is zero. | ||
# | ||
# auto_complete_model_config.set_dynamic_batching() | ||
|
||
return auto_complete_model_config | ||
|
||
def initialize(self, args): | ||
"""`initialize` is called only once when the model is being loaded. | ||
Implementing `initialize` function is optional. This function allows | ||
the model to initialize any state associated with this model. | ||
Parameters | ||
---------- | ||
args : dict | ||
Both keys and values are strings. The dictionary keys and values are: | ||
* model_config: A JSON string containing the model configuration | ||
* model_instance_kind: A string containing model instance kind | ||
* model_instance_device_id: A string containing model instance device | ||
ID | ||
* model_repository: Model repository path | ||
* model_version: Model version | ||
* model_name: Model name | ||
""" | ||
model_config = json.loads(args["model_config"]) | ||
model_name = model_config["parameters"]["model_name"]["string_value"] | ||
|
||
assert args["model_instance_kind"] == "GPU" | ||
|
||
self.dtype = torch.bfloat16 | ||
|
||
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name) | ||
self.model.to(dtype) | ||
|
||
torch.cuda.cudart().cudaProfilerStart() | ||
|
||
|
||
def execute(self, requests): | ||
"""`execute` must be implemented in every Python model. `execute` | ||
function receives a list of pb_utils.InferenceRequest as the only | ||
argument. This function is called when an inference is requested | ||
for this model. | ||
Parameters | ||
---------- | ||
requests : list | ||
A list of pb_utils.InferenceRequest | ||
Returns | ||
------- | ||
list | ||
A list of pb_utils.InferenceResponse. The length of this list must | ||
be the same as `requests` | ||
""" | ||
|
||
with torch.inference_mode(): | ||
responses = [] | ||
# Every Python backend must iterate through list of requests and create | ||
# an instance of pb_utils.InferenceResponse class for each of them. You | ||
# should avoid storing any of the input Tensors in the class attributes | ||
# as they will be overridden in subsequent inference requests. You can | ||
# make a copy of the underlying NumPy array and store it if it is | ||
# required. | ||
|
||
torch.cuda.nvtx.range_push("get requests") | ||
waveforms = [] | ||
|
||
for i, request in enumerate(requests): | ||
# Perform inference on the request and append it to responses | ||
# list... | ||
in_0 = pb_utils.get_input_tensor_by_name(request, "WAV") | ||
waveforms.append(from_dlpack(in_0.to_dlpack()).squeeze()) | ||
|
||
lengths = torch.Tensor([waveform.shape[-1] for waveform in waveforms]).cuda() | ||
waveform_batch = torch.nn.utils.rnn.pad_sequence(waveforms).cuda() | ||
torch.cuda.nvtx.range_pop() | ||
|
||
torch.cuda.nvtx.range_push("decode_batch") | ||
log_probs, encoded_len, _ = self.model(waveform_batch, lengths) | ||
transcribed_texts, _ = self.model.wer.decoding.ctc_decoder_predictions_tensor( | ||
decoder_outputs=log_probs, decoder_lengths=encoded_len, return_hypotheses=False, | ||
) | ||
torch.cuda.nvtx.range_pop() | ||
|
||
torch.cuda.nvtx.range_push("create responses") | ||
for i in range(len(requests)): | ||
out_tensor = pb_utils.Tensor("TRANSCRIPT", np.array(transcribed_texts[i]).astype(np.object_)) | ||
response = pb_utils.InferenceResponse(output_tensors=[out_tensor]) | ||
responses.append(response) | ||
|
||
torch.cuda.nvtx.range_pop() | ||
|
||
return responses | ||
|
||
def finalize(self): | ||
"""`finalize` is called only once when the model is being unloaded. | ||
Implementing `finalize` function is optional. This function allows | ||
the model to perform any necessary clean ups before exit. | ||
""" | ||
print('Cleaning up...') | ||
# torch.cuda.cudart().cudaProfilerStop() |
57 changes: 57 additions & 0 deletions
57
examples/asr/triton-inference-server/asr_ctc/model_repo/asr_ctc/config.pbtxt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
name: "nemo_asr_ctc_chunked_offline" | ||
backend: "python" | ||
max_batch_size: 32 | ||
|
||
parameters [ | ||
{ | ||
key: "model_name" | ||
value: { string_value: "nvidia/parakeet-ctc-1.1b"} | ||
} | ||
] | ||
# There is no sequence_batching support in pytriton unfortunately... | ||
# So pytriton is not suited to streaming ASR. | ||
input [ | ||
{ | ||
name: "WAV" | ||
data_type: TYPE_FP32 | ||
dims: [-1] | ||
} | ||
] | ||
# TODO: Consider adding a sampling frequency parameter here. Just for error checking. | ||
output [ | ||
{ | ||
name: "TRANSCRIPT" | ||
data_type: TYPE_STRING | ||
dims: [1] | ||
} | ||
] | ||
# How do I make it do "sequence batching"? | ||
dynamic_batching { | ||
preferred_batch_size: [32] | ||
max_queue_delay_microseconds: 1000 | ||
} | ||
instance_group [ | ||
{ | ||
count: 1 | ||
kind: KIND_GPU | ||
} | ||
] |