Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sync : llama.cpp #1047

Closed
wants to merge 6 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions include/ggml-backend.h
Original file line number Diff line number Diff line change
Expand Up @@ -228,6 +228,7 @@ extern "C" {
GGML_API void ggml_backend_unload(ggml_backend_reg_t reg);
// Load all known backends from dynamic libraries
GGML_API void ggml_backend_load_all(void);
GGML_API void ggml_backend_load_all_from_path(const char * dir_path);

//
// Backend scheduler
Expand Down
2 changes: 1 addition & 1 deletion scripts/sync-llama.last
Original file line number Diff line number Diff line change
@@ -1 +1 @@
26a8406ba9198eb6fdd8329fa717555b4f77f05f
9fdb1243049aa7e8211693f116daf2052d47507d
40 changes: 27 additions & 13 deletions src/ggml-backend-reg.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -449,11 +449,21 @@ static std::string backend_filename_suffix() {
#endif
}

static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent) {
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
// TODO: search system paths
std::vector<std::string> search_paths = { "./", get_executable_path() };
std::string file_prefix = backend_filename_prefix() + name + "-";
std::vector<std::string> search_paths;
if (user_search_path == nullptr) {
search_paths.push_back("./");
search_paths.push_back(get_executable_path());
} else {
#if defined(_WIN32)
search_paths.push_back(std::string(user_search_path) + "\\");
#else
search_paths.push_back(std::string(user_search_path) + "/");
#endif
}

int best_score = 0;
std::string best_path;
Expand Down Expand Up @@ -509,21 +519,25 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent)
}

void ggml_backend_load_all() {
ggml_backend_load_all_from_path(nullptr);
}

void ggml_backend_load_all_from_path(const char * dir_path) {
#ifdef NDEBUG
bool silent = true;
#else
bool silent = false;
#endif

ggml_backend_load_best("blas", silent);
ggml_backend_load_best("cann", silent);
ggml_backend_load_best("cuda", silent);
ggml_backend_load_best("hip", silent);
ggml_backend_load_best("kompute", silent);
ggml_backend_load_best("metal", silent);
ggml_backend_load_best("rpc", silent);
ggml_backend_load_best("sycl", silent);
ggml_backend_load_best("vulkan", silent);
ggml_backend_load_best("musa", silent);
ggml_backend_load_best("cpu", silent);
ggml_backend_load_best("blas", silent, dir_path);
ggml_backend_load_best("cann", silent, dir_path);
ggml_backend_load_best("cuda", silent, dir_path);
ggml_backend_load_best("hip", silent, dir_path);
ggml_backend_load_best("kompute", silent, dir_path);
ggml_backend_load_best("metal", silent, dir_path);
ggml_backend_load_best("rpc", silent, dir_path);
ggml_backend_load_best("sycl", silent, dir_path);
ggml_backend_load_best("vulkan", silent, dir_path);
ggml_backend_load_best("musa", silent, dir_path);
ggml_backend_load_best("cpu", silent, dir_path);
}
2 changes: 1 addition & 1 deletion src/ggml-common.h
Original file line number Diff line number Diff line change
Expand Up @@ -473,7 +473,7 @@ GGML_TABLE_BEGIN(uint8_t, ksigns_iq2xs, 128)
240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
GGML_TABLE_END()

//#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
//#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A // lowest compute capability for integer intrinsics
GGML_TABLE_BEGIN(uint64_t, ksigns64, 128)
0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff,
0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff,
Expand Down
70 changes: 35 additions & 35 deletions src/ggml-cuda/common.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -41,28 +41,28 @@
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
#define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons

#define CC_PASCAL 600
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define CC_VOLTA 700
#define CC_TURING 750
#define CC_AMPERE 800
#define CC_OFFSET_AMD 1000000
#define GGML_CUDA_CC_PASCAL 600
#define GGML_CUDA_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define GGML_CUDA_CC_VOLTA 700
#define GGML_CUDA_CC_TURING 750
#define GGML_CUDA_CC_AMPERE 800
#define GGML_CUDA_CC_OFFSET_AMD 1000000

// GCN/CNDA, wave size is 64
#define CC_GCN4 (CC_OFFSET_AMD + 803) // Tonga, Fiji, Polaris, minimum for fast fp16
#define CC_VEGA (CC_OFFSET_AMD + 900) // Vega56/64, minimum for fp16 dual issue
#define CC_VEGA20 (CC_OFFSET_AMD + 906) // MI50/Radeon VII, minimum for dp4a
#define CC_CDNA (CC_OFFSET_AMD + 908) // MI100, minimum for MFMA, acc registers
#define CC_CDNA2 (CC_OFFSET_AMD + 910) // MI210, minimum acc register renameing
#define CC_CDNA3 (CC_OFFSET_AMD + 942) // MI300
#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 803) // Tonga, Fiji, Polaris, minimum for fast fp16
#define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 900) // Vega56/64, minimum for fp16 dual issue
#define GGML_CUDA_CC_VEGA20 (GGML_CUDA_CC_OFFSET_AMD + 906) // MI50/Radeon VII, minimum for dp4a
#define GGML_CUDA_CC_CDNA (GGML_CUDA_CC_OFFSET_AMD + 908) // MI100, minimum for MFMA, acc registers
#define GGML_CUDA_CC_CDNA2 (GGML_CUDA_CC_OFFSET_AMD + 910) // MI210, minimum acc register renameing
#define GGML_CUDA_CC_CDNA3 (GGML_CUDA_CC_OFFSET_AMD + 942) // MI300

// RNDA removes MFMA, dp4a, xnack, acc registers, wave size is 32
#define CC_RDNA1 (CC_OFFSET_AMD + 1010) // RX 5000
#define CC_RDNA2 (CC_OFFSET_AMD + 1030) // RX 6000, minimum for dp4a
#define CC_RDNA3 (CC_OFFSET_AMD + 1100) // RX 7000, minimum for WMMA
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 1010) // RX 5000
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 1100) // RX 7000, minimum for WMMA

#define CC_QY1 210
#define CC_QY2 220
#define GGML_CUDA_CC_QY1 210
#define GGML_CUDA_CC_QY2 220

#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses

Expand Down Expand Up @@ -131,36 +131,36 @@ typedef float dfloat; // dequantize float
typedef float2 dfloat2;
#endif // GGML_CUDA_F16

#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#define FP16_AVAILABLE
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL

#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#define FAST_FP16_AVAILABLE
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610

#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#define FP16_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA

#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define INT8_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING

#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)
#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
#define FLASH_ATTN_AVAILABLE
#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)
#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)

static constexpr bool fast_fp16_available(const int cc) {
return cc >= CC_PASCAL && cc != 610;
return cc >= GGML_CUDA_CC_PASCAL && cc != 610;
}

static constexpr bool fp16_mma_available(const int cc) {
return cc < CC_OFFSET_AMD && cc >= CC_VOLTA;
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA;
}

static constexpr bool int8_mma_available(const int cc) {
return cc < CC_OFFSET_AMD && cc >= CC_TURING;
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_TURING;
}

[[noreturn]]
Expand All @@ -187,15 +187,15 @@ static __device__ void no_device_code(
#endif // __CUDA_ARCH__

static __device__ __forceinline__ int warp_reduce_sum(int x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
return __reduce_add_sync(0xffffffff, x);
#else
#pragma unroll
for (int offset = 16; offset > 0; offset >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, offset, 32);
}
return x;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
}

static __device__ __forceinline__ float warp_reduce_sum(float x) {
Expand Down Expand Up @@ -284,7 +284,7 @@ static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const hal
}

static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#pragma unroll
for (int offset = 16; offset > 0; offset >>= 1) {
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
Expand All @@ -293,7 +293,7 @@ static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#else
GGML_UNUSED(x);
NO_DEVICE_CODE;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
}

#if CUDART_VERSION < CUDART_HMASK
Expand Down Expand Up @@ -333,13 +333,13 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i

#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)

#if __CUDA_ARCH__ >= MIN_CC_DP4A
#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A
return __dp4a(a, b, c);
#else // __CUDA_ARCH__ >= MIN_CC_DP4A
#else // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A
const int8_t * a8 = (const int8_t *) &a;
const int8_t * b8 = (const int8_t *) &b;
return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A

#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
}
Expand Down
6 changes: 3 additions & 3 deletions src/ggml-cuda/convert.cu
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __

template <bool need_check>
static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int64_t k) {
#if __CUDA_ARCH__ >= CC_PASCAL
#if __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;

const int64_t i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
Expand Down Expand Up @@ -64,7 +64,7 @@ static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, h
GGML_UNUSED(y);
GGML_UNUSED(k);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= CC_PASCAL
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
}

template<typename dst_t>
Expand Down Expand Up @@ -599,7 +599,7 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
case GGML_TYPE_Q5_1:
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
case GGML_TYPE_Q8_0:
if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= CC_PASCAL) {
if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= GGML_CUDA_CC_PASCAL) {
return dequantize_block_q8_0_f16_cuda;
}
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
Expand Down
2 changes: 1 addition & 1 deletion src/ggml-cuda/fattn.cu
Original file line number Diff line number Diff line change
Expand Up @@ -304,7 +304,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);

// On AMD the tile kernels perform poorly, use the vec kernel instead:
if (cc >= CC_OFFSET_AMD) {
if (cc >= GGML_CUDA_CC_OFFSET_AMD) {
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
} else {
Expand Down
12 changes: 6 additions & 6 deletions src/ggml-cuda/ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.devices[id].smpb = prop.sharedMemPerBlock;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
info.devices[id].smpbo = prop.sharedMemPerBlock;
info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
info.devices[id].cc = 100*prop.major + 10*prop.minor + GGML_CUDA_CC_OFFSET_AMD;
#else
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
info.devices[id].cc = 100*prop.major + 10*prop.minor;
Expand Down Expand Up @@ -1081,7 +1081,7 @@ static void ggml_cuda_op_mul_mat_cublas(

const int compute_capability = ggml_cuda_info().devices[id].cc;

if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
if (compute_capability >= GGML_CUDA_CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
if (src0->type != GGML_TYPE_F16) {
Expand All @@ -1108,7 +1108,7 @@ static void ggml_cuda_op_mul_mat_cublas(
const half beta_f16 = 0.0f;

cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
if (ggml_cuda_info().devices[ctx.device].cc == CC_CDNA) {
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
cu_compute_type = CUBLAS_COMPUTE_32F;
}

Expand Down Expand Up @@ -1612,7 +1612,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
cudaDataType_t cu_data_type = CUDA_R_16F;

if (ggml_cuda_info().devices[ctx.device].cc == CC_CDNA) {
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
cu_compute_type = CUBLAS_COMPUTE_32F;
}

Expand Down Expand Up @@ -2357,7 +2357,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
std::vector<void *> ggml_cuda_cpy_fn_ptrs;

if (cuda_ctx->cuda_graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
Expand Down Expand Up @@ -3028,7 +3028,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return true;
}
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
return cc >= CC_VOLTA && cc < CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
return cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
}
case GGML_OP_CROSS_ENTROPY_LOSS:
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
Expand Down
8 changes: 4 additions & 4 deletions src/ggml-cuda/mma.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -171,7 +171,7 @@ struct mma_int_C_I16J8 {

__device__ __forceinline__ void mma_K4(const mma_int_A_I16K4 & mma_A, const mma_int_B_J8K4 & mma_B) {
#ifdef INT8_MMA_AVAILABLE
#if __CUDA_ARCH__ >= CC_AMPERE
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
asm("mma.sync.aligned.m16n8k16.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_B.x[0]));
Expand All @@ -183,7 +183,7 @@ struct mma_int_C_I16J8 {
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[1]), "r"(mma_B.x[0]));
#endif // __CUDA_ARCH__ >= CC_AMPERE
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#else
GGML_UNUSED(mma_A);
GGML_UNUSED(mma_B);
Expand All @@ -193,7 +193,7 @@ struct mma_int_C_I16J8 {

__device__ __forceinline__ void mma_K8(const mma_int_A_I16K8 & mma_A, const mma_int_B_J8K8 & mma_B) {
#ifdef INT8_MMA_AVAILABLE
#if __CUDA_ARCH__ >= CC_AMPERE
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_A.x[2]), "r"(mma_A.x[3]), "r"(mma_B.x[0]), "r"(mma_B.x[1]));
Expand All @@ -211,7 +211,7 @@ struct mma_int_C_I16J8 {
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[3]), "r"(mma_B.x[1]));
#endif // __CUDA_ARCH__ >= CC_AMPERE
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#else
GGML_UNUSED(mma_A);
GGML_UNUSED(mma_B);
Expand Down
10 changes: 5 additions & 5 deletions src/ggml-cuda/mmq.cu
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ void ggml_cuda_op_mul_mat_q(
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
// Also its fixup needs to allocate a temporary buffer in the memory pool.
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
const bool use_stream_k = compute_capability >= CC_VOLTA && compute_capability < CC_OFFSET_AMD && src1_ncols == ne11;
const bool use_stream_k = compute_capability >= GGML_CUDA_CC_VOLTA && compute_capability < GGML_CUDA_CC_OFFSET_AMD && src1_ncols == ne11;
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};

switch (src0->type) {
Expand Down Expand Up @@ -136,17 +136,17 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return true;
}

if (cc < MIN_CC_DP4A) {
if (cc < GGML_CUDA_CC_DP4A) {
return false;
}

#ifdef GGML_CUDA_FORCE_MMQ
return true;
#endif //GGML_CUDA_FORCE_MMQ

if (cc < CC_OFFSET_AMD) {
return cc < CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
if (cc < GGML_CUDA_CC_OFFSET_AMD) {
return cc < GGML_CUDA_CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

return (cc < CC_RDNA3 && cc != CC_CDNA && cc != CC_VEGA20) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
return (cc < GGML_CUDA_CC_RDNA3 && cc != GGML_CUDA_CC_CDNA && cc != GGML_CUDA_CC_VEGA20) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
Loading
Loading