Skip to content

Commit

Permalink
llama : rename missed batch params/vars to ubatch (#10059)
Browse files Browse the repository at this point in the history
This commit renames the `batch` parameter to `ubatch` in the
`llama_kv_cache_find_slot`, `llm_build_inp_embd`, and
`llm_build_mamba` functions.

The motivation for this is that this should have been done as part of
Commit 19d900a ("llama : rename batch
to ubatch (#9950)") but for some reason I missed these functions in
that commit and only noticed them now (sorry).
  • Loading branch information
danbev authored Jan 6, 2025
1 parent 47182dd commit 6369f86
Show file tree
Hide file tree
Showing 2 changed files with 25 additions and 25 deletions.
32 changes: 16 additions & 16 deletions src/llama-kv-cache.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -119,27 +119,27 @@ bool llama_kv_cache_init(

struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
struct llama_kv_cache & cache,
const struct llama_ubatch & batch) {
const uint32_t n_tokens = batch.n_tokens;
const uint32_t n_seqs = batch.n_seqs;
const uint32_t n_seq_tokens = batch.n_seq_tokens;
const struct llama_ubatch & ubatch) {
const uint32_t n_tokens = ubatch.n_tokens;
const uint32_t n_seqs = ubatch.n_seqs;
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;

if (cache.recurrent) {
// For recurrent state architectures (like Mamba or RWKV),
// each cache cell can store the state for a whole sequence.
// A slot should be always be contiguous.

// can only process batches with an equal number of new tokens in each sequence
GGML_ASSERT(batch.equal_seqs);
GGML_ASSERT(ubatch.equal_seqs);

int32_t min = cache.size - 1;
int32_t max = 0;

// everything should fit if all seq_ids are smaller than the max
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t n_seq_id = batch.n_seq_id[s];
const uint32_t n_seq_id = ubatch.n_seq_id[s];
for (uint32_t j = 0; j < n_seq_id; ++j) {
const llama_seq_id seq_id = batch.seq_id[s][j];
const llama_seq_id seq_id = ubatch.seq_id[s][j];

if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
// too big seq_id
Expand Down Expand Up @@ -198,7 +198,7 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(

// find usable cell range
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = batch.seq_id[s][0];
const llama_seq_id seq_id = ubatch.seq_id[s][0];
llama_kv_cell & seq_meta = cache.cells[seq_id];
bool has_cell = false;
if (seq_meta.tail >= 0) {
Expand Down Expand Up @@ -237,7 +237,7 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
int32_t dst_id = s + min;
int32_t src_id = cache.cells[batch.seq_id[s][0]].tail;
int32_t src_id = cache.cells[ubatch.seq_id[s][0]].tail;
if (dst_id != src_id) {
llama_kv_cell & dst_cell = cache.cells[dst_id];
llama_kv_cell & src_cell = cache.cells[src_id];
Expand All @@ -258,20 +258,20 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(

// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1];
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
int32_t cell_id = s + min;
llama_kv_cell & cell = cache.cells[cell_id];

if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
// What should happen when the pos backtracks or skips a value?
// Clearing the state mid-batch would require special-casing which isn't done.
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
__func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens);
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
}
cell.pos = last_pos;
cell.seq_id.clear();
for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = batch.seq_id[s][j];
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
cell.seq_id.insert(seq_id);
cache.cells[seq_id].tail = cell_id;
}
Expand Down Expand Up @@ -325,10 +325,10 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
for (uint32_t s = 0; s < n_seqs; s++) {
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
uint32_t k = s*n_seq_tokens + i;
cache.cells[cache.head + k].pos = batch.pos[k];
cache.cells[cache.head + k].pos = ubatch.pos[k];

for (int32_t j = 0; j < batch.n_seq_id[s]; j++) {
cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]);
for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) {
cache.cells[cache.head + k].seq_id.insert(ubatch.seq_id[s][j]);
}
}
}
Expand Down
18 changes: 9 additions & 9 deletions src/llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2540,21 +2540,21 @@ static struct ggml_tensor * llm_build_inp_embd(
struct ggml_context * ctx,
struct llama_context & lctx,
const llama_hparams & hparams,
const llama_ubatch & batch,
const llama_ubatch & ubatch,
struct ggml_tensor * tok_embd,
const llm_build_cb & cb) {
const int64_t n_embd = hparams.n_embd;

struct ggml_tensor * inpL;

if (batch.token) {
lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
if (ubatch.token) {
lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ubatch.n_tokens);
cb(lctx.inp_tokens, "inp_tokens", -1);
ggml_set_input(lctx.inp_tokens);

inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
} else {
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
inpL = lctx.inp_embd;
ggml_set_input(lctx.inp_embd);
}
Expand Down Expand Up @@ -3149,7 +3149,7 @@ static struct ggml_tensor * llm_build_copy_mask_state(
static struct ggml_tensor * llm_build_mamba(
struct ggml_context * ctx,
struct llama_context & lctx,
const llama_ubatch & batch,
const llama_ubatch & ubatch,
struct ggml_cgraph * graph,
struct ggml_tensor * cur,
struct ggml_tensor * state_copy,
Expand All @@ -3165,17 +3165,17 @@ static struct ggml_tensor * llm_build_mamba(
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t dt_rank = hparams.ssm_dt_rank;
const int64_t n_seqs = batch.n_seqs;
const int64_t n_seqs = ubatch.n_seqs;
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
// Use the same RMS norm as the final layer norm
const float norm_rms_eps = hparams.f_norm_rms_eps;

const int64_t n_seq_tokens = batch.n_seq_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;

GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(batch.equal_seqs);
GGML_ASSERT(batch.n_tokens == n_seq_tokens * n_seqs);
GGML_ASSERT(ubatch.equal_seqs);
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);

struct ggml_tensor * conv_states_all = kv.k_l[il];
struct ggml_tensor * ssm_states_all = kv.v_l[il];
Expand Down

0 comments on commit 6369f86

Please sign in to comment.