-
Notifications
You must be signed in to change notification settings - Fork 10.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into add_pfnet_plamo_13b
- Loading branch information
Showing
22 changed files
with
1,794 additions
and
157 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
#!/usr/bin/env python3 | ||
# HF bloom --> gguf conversion | ||
|
||
from __future__ import annotations | ||
|
||
import argparse | ||
import json | ||
import os | ||
import re | ||
import struct | ||
import sys | ||
from pathlib import Path | ||
from typing import Any | ||
|
||
import numpy as np | ||
import torch | ||
from transformers import AutoTokenizer # type: ignore[import] | ||
|
||
if 'NO_LOCAL_GGUF' not in os.environ: | ||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) | ||
import gguf | ||
|
||
|
||
def count_model_parts(dir_model: Path) -> int: | ||
num_parts = 0 | ||
for filename in os.listdir(dir_model): | ||
if filename.startswith("pytorch_model-"): | ||
num_parts += 1 | ||
|
||
if num_parts > 0: | ||
print("gguf: found " + str(num_parts) + " model parts") | ||
return num_parts | ||
|
||
|
||
# Supported Models: | ||
# https://huggingface.co/bigscience/bloom-1b7 | ||
# https://huggingface.co/bigscience/bloom-3b | ||
# https://huggingface.co/bigscience/bloom-7b1 | ||
# https://huggingface.co/Langboat/bloom-1b4-zh | ||
def parse_args() -> argparse.Namespace: | ||
parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file") | ||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") | ||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") | ||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") | ||
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1) | ||
return parser.parse_args() | ||
|
||
args = parse_args() | ||
|
||
dir_model = args.model | ||
ftype = args.ftype | ||
if not dir_model.is_dir(): | ||
print(f'Error: {args.model} is not a directory', file = sys.stderr) | ||
sys.exit(1) | ||
|
||
# possible tensor data types | ||
# ftype == 0 -> float32 | ||
# ftype == 1 -> float16 | ||
|
||
# map from ftype to string | ||
ftype_str = ["f32", "f16"] | ||
|
||
if args.outfile is not None: | ||
fname_out = args.outfile | ||
else: | ||
# output in the same directory as the model by default | ||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' | ||
|
||
print("gguf: loading model "+dir_model.name) | ||
|
||
with open(dir_model / "config.json", "r", encoding="utf-8") as f: | ||
hparams = json.load(f) | ||
|
||
if hparams["architectures"][0] != "BloomForCausalLM": | ||
print("Model architecture not supported: " + hparams["architectures"][0]) | ||
sys.exit(1) | ||
|
||
# get number of model parts | ||
num_parts = count_model_parts(dir_model) | ||
|
||
ARCH=gguf.MODEL_ARCH.BLOOM | ||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) | ||
|
||
print("gguf: get model metadata") | ||
|
||
block_count = hparams["n_layer"] | ||
|
||
gguf_writer.add_name("Bloom") | ||
n_embed = hparams.get("hidden_size", hparams.get("n_embed")) | ||
n_head = hparams.get("n_head", hparams.get("num_attention_heads")) | ||
gguf_writer.add_context_length(hparams.get("seq_length", n_embed)) | ||
gguf_writer.add_embedding_length(n_embed) | ||
gguf_writer.add_feed_forward_length(4 * n_embed) | ||
gguf_writer.add_block_count(block_count) | ||
gguf_writer.add_head_count(n_head) | ||
gguf_writer.add_head_count_kv(n_head) | ||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"]) | ||
gguf_writer.add_file_type(ftype) | ||
|
||
# TOKENIZATION | ||
|
||
print("gguf: get tokenizer metadata") | ||
|
||
tokens: list[bytearray] = [] | ||
scores: list[float] = [] | ||
toktypes: list[int] = [] | ||
|
||
# gpt2 tokenizer | ||
gguf_writer.add_tokenizer_model("gpt2") | ||
|
||
print("gguf: get gpt2 tokenizer vocab") | ||
|
||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py | ||
tokenizer = AutoTokenizer.from_pretrained(dir_model) | ||
|
||
# The number of tokens in tokenizer.json can differ from the expected vocab size. | ||
# This causes downstream issues with mismatched tensor sizes when running the inference | ||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) | ||
assert max(tokenizer.vocab.values()) < vocab_size | ||
|
||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} | ||
|
||
for i in range(vocab_size): | ||
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") | ||
scores.append(0.0) # dummy | ||
toktypes.append(gguf.TokenType.NORMAL) | ||
|
||
gguf_writer.add_token_list(tokens) | ||
gguf_writer.add_token_scores(scores) | ||
gguf_writer.add_token_types(toktypes) | ||
|
||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) | ||
special_vocab.add_to_gguf(gguf_writer) | ||
|
||
# TENSORS | ||
|
||
tensor_map = gguf.get_tensor_name_map(ARCH, block_count) | ||
|
||
# params for qkv transform | ||
n_head_kv = hparams.get("n_head_kv", n_head) | ||
head_dim = n_embed // n_head | ||
|
||
# tensor info | ||
print("gguf: get tensor metadata") | ||
|
||
if num_parts == 0: | ||
part_names = iter(("pytorch_model.bin",)) | ||
else: | ||
part_names = ( | ||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) | ||
) | ||
|
||
for part_name in part_names: | ||
if args.vocab_only: | ||
break | ||
print("gguf: loading model part '" + part_name + "'") | ||
model_part = torch.load(dir_model / part_name, map_location="cpu") | ||
|
||
has_lm_head = True | ||
if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys(): | ||
has_lm_head = False | ||
|
||
for original_name in model_part.keys(): | ||
data = model_part[original_name] | ||
name = re.sub(r'transformer\.', '', original_name) | ||
|
||
old_dtype = data.dtype | ||
|
||
# convert any unsupported data types to float32 | ||
if data.dtype != torch.float16 and data.dtype != torch.float32: | ||
data = data.to(torch.float32) | ||
|
||
data = data.squeeze().numpy() | ||
|
||
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name): | ||
# Map bloom-style qkv_linear to gpt-style qkv_linear | ||
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa | ||
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa | ||
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed)) | ||
data = np.concatenate( | ||
(qkv_weights[:, 0, :, :].reshape((-1, n_embed)), | ||
qkv_weights[:, 1, :, :].reshape((-1, n_embed)), | ||
qkv_weights[:, 2, :, :].reshape((-1, n_embed))), | ||
axis=0 | ||
) | ||
print("re-format attention.linear_qkv.weight") | ||
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): | ||
qkv_bias = data.reshape((n_head, 3, n_embed // n_head)) | ||
data = np.concatenate( | ||
(qkv_bias[:, 0, :].reshape((n_embed,)), | ||
qkv_bias[:, 1, :].reshape((n_embed,)), | ||
qkv_bias[:, 2, :].reshape((n_embed,))), | ||
axis=0 | ||
) | ||
print("re-format attention.linear_qkv.bias") | ||
|
||
# map tensor names | ||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) | ||
if new_name is None: | ||
print("Can not map tensor '" + name + "'") | ||
sys.exit() | ||
|
||
n_dims = len(data.shape) | ||
data_dtype = data.dtype | ||
|
||
# if f32 desired, convert any float16 to float32 | ||
if ftype == 0 and data_dtype == np.float16: | ||
data = data.astype(np.float32) | ||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||
data = data.astype(np.float32) | ||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16 | ||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||
data = data.astype(np.float16) | ||
|
||
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) | ||
|
||
gguf_writer.add_tensor(new_name, data) | ||
|
||
if not has_lm_head and name == "word_embeddings.weight": | ||
gguf_writer.add_tensor("output.weight", data) | ||
print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) # noqa | ||
|
||
|
||
print("gguf: write header") | ||
gguf_writer.write_header_to_file() | ||
print("gguf: write metadata") | ||
gguf_writer.write_kv_data_to_file() | ||
if not args.vocab_only: | ||
print("gguf: write tensors") | ||
gguf_writer.write_tensors_to_file() | ||
|
||
gguf_writer.close() | ||
|
||
print(f"gguf: model successfully exported to '{fname_out}'") | ||
print("") |
Oops, something went wrong.