-
Notifications
You must be signed in to change notification settings - Fork 10.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add refact model * resolve comments * rebase to the latest * solve alibi cpu error --------- Co-authored-by: Georgi Gerganov <[email protected]>
- Loading branch information
Showing
4 changed files
with
723 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,318 @@ | ||
#!/usr/bin/env python3 | ||
# HF refact--> gguf conversion | ||
|
||
from __future__ import annotations | ||
|
||
import argparse | ||
import json | ||
import os | ||
import sys | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import torch | ||
from transformers import AutoTokenizer # type: ignore[import] | ||
|
||
if "NO_LOCAL_GGUF" not in os.environ: | ||
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf")) | ||
import gguf | ||
|
||
|
||
def bytes_to_unicode(): | ||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py | ||
""" | ||
Returns list of utf-8 byte and a corresponding list of unicode strings. | ||
The reversible bpe codes work on unicode strings. | ||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | ||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | ||
This is a significant percentage of your normal, say, 32K bpe vocab. | ||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | ||
And avoids mapping to whitespace/control characters the bpe code barfs on. | ||
""" | ||
bs = ( | ||
list(range(ord("!"), ord("~") + 1)) | ||
+ list(range(ord("¡"), ord("¬") + 1)) | ||
+ list(range(ord("®"), ord("ÿ") + 1)) | ||
) | ||
cs = bs[:] | ||
n = 0 | ||
for b in range(2**8): | ||
if b not in bs: | ||
bs.append(b) | ||
cs.append(2**8 + n) | ||
n += 1 | ||
return dict(zip(bs, (chr(n) for n in cs))) | ||
|
||
|
||
def count_model_parts(dir_model: Path) -> int: | ||
num_parts = 0 | ||
for filename in os.listdir(dir_model): | ||
if filename.startswith("pytorch_model-"): | ||
num_parts += 1 | ||
|
||
if num_parts > 0: | ||
print("gguf: found " + str(num_parts) + " model parts") | ||
return num_parts | ||
|
||
|
||
def parse_args() -> argparse.Namespace: | ||
parser = argparse.ArgumentParser( | ||
description="Convert a Refact model to a GGML compatible file" | ||
) | ||
parser.add_argument( | ||
"--vocab-only", | ||
action="store_true", | ||
help="extract only the vocab", | ||
) | ||
parser.add_argument( | ||
"--outfile", | ||
type=Path, | ||
help="path to write to; default: based on input", | ||
) | ||
parser.add_argument( | ||
"model", | ||
type=Path, | ||
help="directory containing model file, or model file itself (*.bin)", | ||
) | ||
parser.add_argument( | ||
"ftype", | ||
type=int, | ||
choices=[0, 1], | ||
default=1, | ||
nargs="?", | ||
help="output format - use 0 for float32, 1 for float16", | ||
) | ||
return parser.parse_args() | ||
|
||
|
||
args = parse_args() | ||
|
||
dir_model = args.model | ||
ftype = args.ftype | ||
if not dir_model.is_dir(): | ||
print(f"Error: {args.model} is not a directory", file=sys.stderr) | ||
sys.exit(1) | ||
|
||
# possible tensor data types | ||
# ftype == 0 -> float32 | ||
# ftype == 1 -> float16 | ||
|
||
# map from ftype to string | ||
ftype_str = ["f32", "f16"] | ||
|
||
if args.outfile is not None: | ||
fname_out = args.outfile | ||
else: | ||
# output in the same directory as the model by default | ||
fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf" | ||
|
||
print("gguf: loading model " + dir_model.name) | ||
|
||
with open(dir_model / "config.json", "r", encoding="utf-8") as f: | ||
hparams = json.load(f) | ||
|
||
if hparams["architectures"][0] != "GPTRefactForCausalLM": | ||
print("Model architecture not supported: " + hparams["architectures"][0]) | ||
|
||
sys.exit(1) | ||
|
||
# get number of model parts | ||
num_parts = count_model_parts(dir_model) | ||
|
||
ARCH = gguf.MODEL_ARCH.REFACT | ||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) | ||
|
||
print("gguf: get model metadata") | ||
|
||
# Get refact feed forward dimension | ||
hidden_dim = hparams["n_embd"] | ||
inner_dim = 4 * hidden_dim | ||
hidden_dim = int(2 * inner_dim / 3) | ||
multiple_of = 256 | ||
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | ||
|
||
block_count = hparams["n_layer"] | ||
|
||
gguf_writer.add_name("Refact") | ||
# refact uses Alibi. So this is from config.json which might be used by training. | ||
gguf_writer.add_context_length(hparams["n_positions"]) | ||
gguf_writer.add_embedding_length(hparams["n_embd"]) | ||
|
||
gguf_writer.add_feed_forward_length(ff_dim) | ||
gguf_writer.add_block_count(block_count) | ||
gguf_writer.add_head_count(hparams["n_head"]) | ||
gguf_writer.add_head_count_kv(1) | ||
gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"]) | ||
gguf_writer.add_file_type(ftype) | ||
|
||
# TOKENIZATION | ||
|
||
print("gguf: get tokenizer metadata") | ||
|
||
tokens: list[bytearray] = [] | ||
scores: list[float] = [] | ||
toktypes: list[int] = [] | ||
|
||
tokenizer_json_file = dir_model / "tokenizer.json" | ||
if not tokenizer_json_file.is_file(): | ||
print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr) | ||
sys.exit(1) | ||
|
||
# gpt2 tokenizer | ||
gguf_writer.add_tokenizer_model("gpt2") | ||
|
||
with open(tokenizer_json_file, "r", encoding="utf-8") as f: | ||
tokenizer_json = json.load(f) | ||
|
||
print("gguf: get gpt2 tokenizer vocab") | ||
|
||
# The number of tokens in tokenizer.json can differ from the expected vocab size. | ||
# This causes downstream issues with mismatched tensor sizes when running the inference | ||
vocab_size = ( | ||
hparams["vocab_size"] | ||
if "vocab_size" in hparams | ||
else len(tokenizer_json["model"]["vocab"]) | ||
) | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) | ||
|
||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} | ||
byte_encoder = bytes_to_unicode() | ||
byte_decoder = {v: k for k, v in byte_encoder.items()} | ||
|
||
for i in range(vocab_size): | ||
if i in reverse_vocab: | ||
text = reverse_vocab[i] | ||
try: | ||
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) | ||
except KeyError: | ||
text = bytearray() | ||
for c in reverse_vocab[i]: | ||
if ord(c) < 256: # single byte character | ||
text.append(byte_decoder[ord(c)]) | ||
else: # multibyte special token character | ||
text.extend(c.encode("utf-8")) | ||
else: | ||
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") | ||
pad_token = f"[PAD{i}]".encode("utf8") | ||
text = bytearray(pad_token) | ||
|
||
tokens.append(text) | ||
scores.append(0.0) # dymmy | ||
toktypes.append(gguf.TokenType.NORMAL) # dummy | ||
|
||
gguf_writer.add_token_list(tokens) | ||
gguf_writer.add_token_scores(scores) | ||
gguf_writer.add_token_types(toktypes) | ||
|
||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) | ||
special_vocab.add_to_gguf(gguf_writer) | ||
|
||
# TENSORS | ||
|
||
tensor_map = gguf.get_tensor_name_map(ARCH, block_count) | ||
|
||
# params for qkv transform | ||
n_head = hparams["n_head"] | ||
n_head_kv = 1 | ||
|
||
head_dim = hparams["n_embd"] // n_head | ||
|
||
# tensor info | ||
print("gguf: get tensor metadata") | ||
|
||
if num_parts == 0: | ||
part_names = iter(("pytorch_model.bin",)) | ||
else: | ||
part_names = ( | ||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) | ||
) | ||
for part_name in part_names: | ||
if args.vocab_only: | ||
break | ||
print("gguf: loading model part '" + part_name + "'") | ||
model_part = torch.load(dir_model / part_name, map_location="cpu") | ||
|
||
for i in range(block_count): | ||
if f"transformer.h.{i}.attn.kv.weight" in model_part: | ||
data = model_part[f"transformer.h.{i}.attn.kv.weight"] | ||
model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[ | ||
: n_head_kv * head_dim | ||
] | ||
model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[ | ||
n_head_kv * head_dim : | ||
] | ||
del model_part[f"transformer.h.{i}.attn.kv.weight"] | ||
if f"transformer.h.{i}.attn.q.weight" in model_part: | ||
model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[ | ||
f"transformer.h.{i}.attn.q.weight" | ||
] | ||
del model_part[f"transformer.h.{i}.attn.q.weight"] | ||
if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part: | ||
data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"] | ||
model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim] | ||
model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:] | ||
del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"] | ||
|
||
for name in model_part.keys(): | ||
data = model_part[name] | ||
|
||
old_dtype = data.dtype | ||
|
||
# convert any unsupported data types to float32 | ||
if data.dtype != torch.float16 and data.dtype != torch.float32: | ||
data = data.to(torch.float32) | ||
|
||
data = data.squeeze().numpy() | ||
|
||
# map tensor names | ||
new_name = tensor_map.get_name(name, try_suffixes=(".weight",)) | ||
if new_name is None: | ||
print("Can not map tensor '" + name + "'") | ||
sys.exit() | ||
|
||
n_dims = len(data.shape) | ||
data_dtype = data.dtype | ||
|
||
# if f32 desired, convert any float16 to float32 | ||
if ftype == 0 and data_dtype == np.float16: | ||
data = data.astype(np.float32) | ||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||
data = data.astype(np.float32) | ||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16 | ||
if ( | ||
ftype == 1 | ||
and data_dtype == np.float32 | ||
and name.endswith(".weight") | ||
and n_dims == 2 | ||
): | ||
data = data.astype(np.float16) | ||
|
||
print( | ||
new_name | ||
+ ", n_dims = " | ||
+ str(n_dims) | ||
+ ", " | ||
+ str(old_dtype) | ||
+ " --> " | ||
+ str(data.dtype) | ||
) | ||
|
||
gguf_writer.add_tensor(new_name, data) | ||
|
||
|
||
print("gguf: write header") | ||
gguf_writer.write_header_to_file() | ||
print("gguf: write metadata") | ||
gguf_writer.write_kv_data_to_file() | ||
if not args.vocab_only: | ||
print("gguf: write tensors") | ||
gguf_writer.write_tensors_to_file() | ||
|
||
gguf_writer.close() | ||
|
||
print(f"gguf: model successfully exported to '{fname_out}'") | ||
print("") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.