Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ggml-cuda : update rope implementation for parallel decoding #3254

Merged
merged 5 commits into from
Sep 19, 2023
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
79 changes: 54 additions & 25 deletions ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -439,6 +439,7 @@ static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullpt
struct ggml_tensor_extra_gpu {
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][MAX_STREAMS]; // events for synchronizing multiple GPUs
bool copied;
};

// this is faster on Windows
Expand Down Expand Up @@ -4355,8 +4356,9 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
}

// rope == RoPE == rotary positional embedding
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale) {

static __global__ void rope_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);

if (col >= ncols) {
Expand All @@ -4365,8 +4367,11 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c

const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int i = row*ncols + col;
const int i2 = row/p_delta_rows;

const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
const int p = pos != nullptr ? pos[i2] : 0;
const float p0 = p * freq_scale;
const float theta = p0*powf(theta_scale, col/2);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
Comment on lines +4372 to 4376
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Instead of a conditional statement I think it would be faster to either pass zerod memory or to do the check via a template. In the latter case you could also simplify this code since p == 0 implies sin_theta == 0 and cos_theta == 1.


Expand All @@ -4377,8 +4382,8 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
dst[i + 1] = x0*sin_theta + x1*cos_theta;
}

static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale) {
static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);

if (col >= ncols) {
Expand All @@ -4387,8 +4392,11 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco

const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int i = row*ncols + col/2;
const int i2 = row/p_delta_rows;

const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
const int p = pos != nullptr ? pos[i2] : 0;
const float p0 = p * freq_scale;
const float theta = p0*powf(theta_scale, col/2);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);

Expand All @@ -4399,8 +4407,8 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco
dst[i + ncols/2] = x0*sin_theta + x1*cos_theta;
}

static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx) {
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale, const int n_ctx) {
const int col = blockDim.x*blockIdx.x + threadIdx.x;
const int half_n_dims = ncols/4;

Expand All @@ -4410,11 +4418,13 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol

const int row = blockDim.y*blockIdx.y + threadIdx.y;
const int i = row*ncols + col;
const int i2 = row/p_delta_rows;

const float col_theta_scale = powf(theta_scale, col);
const float p = p0 + p_delta*(row/p_delta_rows);
// FIXME: this is likely wrong
const int p = pos != nullptr ? pos[i2] : 0;

const float theta = min(p, p_delta*(n_ctx - 2))*col_theta_scale;
const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);

Expand All @@ -4424,7 +4434,7 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol
dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;

const float block_theta = max(p - p_delta*(n_ctx - 2), 0.f)*col_theta_scale;
const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
const float sin_block_theta = sinf(block_theta);
const float cos_block_theta = cosf(block_theta);

Expand Down Expand Up @@ -5361,31 +5371,31 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
}

static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
GGML_ASSERT(ncols % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1);
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
}

static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
GGML_ASSERT(ncols % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1);
rope_neox_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
rope_neox_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
}

static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) {
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) {
GGML_ASSERT(ncols % 4 == 0);
const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
const dim3 block_nums(num_blocks_x, nrows, 1);
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale, n_ctx);
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale, n_ctx);
}

static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
Expand Down Expand Up @@ -6069,9 +6079,10 @@ inline void ggml_cuda_op_rope(

const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne2 = dst->ne[2];
const int64_t nrows = ggml_nrows(src0);

const int n_past = ((int32_t *) dst->op_params)[0];
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
Expand All @@ -6082,19 +6093,37 @@ inline void ggml_cuda_op_rope(
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));

const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
// const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;

GGML_ASSERT(src1->type == GGML_TYPE_I32);
GGML_ASSERT(src1->ne[0] == ne2);
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);

int id;
CUDA_CHECK(cudaGetDevice(&id));

int * pos = nullptr;
if ((mode & 1) == 0) {
struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
pos = (int *) src1_extra->data_device[id];
if (!src1_extra->copied) {
CUDA_CHECK(cudaMemcpyAsync(pos, src1->data, ggml_nbytes(src1), cudaMemcpyHostToDevice, main_stream));
src1_extra->copied = true;
}
}
Comment on lines +6105 to +6113
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

With the current codebase I don't think there's much you can do to avoid this. The codebase currently covers constant data being copied to VRAM only before the eval directly from the model file. In all other cases the data is written to VRAM as the output of a tensor. You could of course just not offload src1 which would cause its data to be copied to VRAM automatically in ggml_cuda_op_flatten but that would induce more copies.


const bool is_neox = mode & 2;
const bool is_glm = mode & 4;

// compute
if (is_glm) {
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0, freq_scale, ne01, theta_scale, n_ctx, main_stream);
GGML_ASSERT(false);
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, n_ctx, main_stream);
} else if (is_neox) {
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
rope_neox_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0, freq_scale, ne01, theta_scale, main_stream);
rope_neox_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
} else {
rope_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0, freq_scale, ne01, theta_scale, main_stream);
rope_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
}

(void) src1;
Expand Down
6 changes: 6 additions & 0 deletions llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2705,6 +2705,7 @@ static struct ggml_cgraph * llm_build_llama(

// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
offload_func_kq(KQ_pos);
ggml_allocr_alloc(lctx.alloc, KQ_pos);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) KQ_pos->data;
Expand All @@ -2715,6 +2716,7 @@ static struct ggml_cgraph * llm_build_llama(

// K_shift
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
offload_func_kq(K_shift);
ggml_allocr_alloc(lctx.alloc, K_shift);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) K_shift->data;
Expand Down Expand Up @@ -3087,6 +3089,7 @@ static struct ggml_cgraph * llm_build_baichaun(

// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
offload_func_kq(KQ_pos);
ggml_allocr_alloc(lctx.alloc, KQ_pos);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) KQ_pos->data;
Expand All @@ -3097,6 +3100,7 @@ static struct ggml_cgraph * llm_build_baichaun(

// K_shift
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
offload_func_kq(K_shift);
ggml_allocr_alloc(lctx.alloc, K_shift);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) K_shift->data;
Expand Down Expand Up @@ -3486,6 +3490,7 @@ static struct ggml_cgraph * llm_build_falcon(

// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
offload_func_kq(KQ_pos);
ggml_allocr_alloc(lctx.alloc, KQ_pos);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) KQ_pos->data;
Expand All @@ -3496,6 +3501,7 @@ static struct ggml_cgraph * llm_build_falcon(

// K_shift
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
offload_func_kq(K_shift);
ggml_allocr_alloc(lctx.alloc, K_shift);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) K_shift->data;
Expand Down