-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
545e3cd
commit f8bd542
Showing
4 changed files
with
127 additions
and
45 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
# Copyright 2023 PKU-Alignment Team. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
from __future__ import annotations | ||
|
||
import torch | ||
from transformers import PreTrainedModel, PreTrainedTokenizerBase | ||
import sys | ||
sys.path.append('../..') | ||
from constants import DEFAULT_BOS_TOKEN, DEFAULT_EOS_TOKEN, DEFAULT_PAD_TOKEN, DEFAULT_UNK_TOKEN | ||
|
||
|
||
# Reference: https://github.com/tatsu-lab/stanford_alpaca/blob/main/train.py | ||
def resize_tokenizer_embedding( | ||
model: PreTrainedModel, | ||
tokenizer: PreTrainedTokenizerBase, | ||
) -> None: | ||
"""Resize tokenizer and embedding.""" | ||
|
||
special_tokens_dict = {} | ||
if tokenizer.pad_token is None: | ||
special_tokens_dict['pad_token'] = DEFAULT_PAD_TOKEN | ||
if tokenizer.eos_token is None: | ||
special_tokens_dict['eos_token'] = DEFAULT_EOS_TOKEN | ||
if tokenizer.bos_token is None: | ||
special_tokens_dict['bos_token'] = DEFAULT_BOS_TOKEN | ||
if tokenizer.unk_token is None: | ||
special_tokens_dict['unk_token'] = DEFAULT_UNK_TOKEN | ||
|
||
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) | ||
model.resize_token_embeddings(len(tokenizer)) | ||
|
||
model.config.bos_token_id = tokenizer.bos_token_id | ||
model.config.eos_token_id = tokenizer.eos_token_id | ||
model.config.pad_token_id = tokenizer.pad_token_id | ||
|
||
if num_new_tokens > 0: | ||
if model.get_input_embeddings() is not None: | ||
input_embeddings = model.get_input_embeddings().weight.data | ||
input_embeddings_mean = input_embeddings[:-num_new_tokens].mean( | ||
dim=0, | ||
keepdim=True, | ||
) | ||
input_embeddings[-num_new_tokens:] = input_embeddings_mean | ||
|
||
if model.get_output_embeddings() is not None: | ||
output_embeddings = model.get_output_embeddings().weight.data | ||
output_embeddings_mean = output_embeddings[:-num_new_tokens].mean( | ||
dim=0, | ||
keepdim=True, | ||
) | ||
output_embeddings[-num_new_tokens:] = output_embeddings_mean | ||
|
||
|
||
def calculate_binary_classification_metrics( | ||
labels: torch.Tensor, | ||
predictions: torch.Tensor, | ||
epsilon: float = 1e-8, | ||
) -> dict[str, float]: | ||
"""Calculate binary classification metrics.""" | ||
assert ( | ||
labels.shape == predictions.shape | ||
), 'The shapes of labels and predictions should be the same.' | ||
|
||
tp = ((labels == 1) & (predictions == 1)).sum().item() # pylint: disable=invalid-name | ||
fp = ((labels == 0) & (predictions == 1)).sum().item() # pylint: disable=invalid-name | ||
tn = ((labels == 0) & (predictions == 0)).sum().item() # pylint: disable=invalid-name | ||
fn = ((labels == 1) & (predictions == 0)).sum().item() # pylint: disable=invalid-name | ||
accuracy = (tp + tn) / (tp + fp + tn + fn) | ||
precision = tp / (tp + fp + epsilon) | ||
recall = tp / (tp + fn + epsilon) | ||
f1 = 2 * precision * recall / (precision + recall + epsilon) # pylint: disable=invalid-name | ||
return { | ||
'accuracy': accuracy, | ||
'precision': precision, | ||
'recall': recall, | ||
'f1': f1, | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters