Skip to content
This repository has been archived by the owner on Feb 22, 2020. It is now read-only.

Commit

Permalink
feat(incep_v4_encoder): add inception v4 encoder for video
Browse files Browse the repository at this point in the history
  • Loading branch information
felix committed Oct 11, 2019
1 parent 9095bfa commit 3901078
Show file tree
Hide file tree
Showing 2 changed files with 85 additions and 0 deletions.
1 change: 1 addition & 0 deletions gnes/encoder/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@
'VggishEncoder': 'audio.vggish',
'YouTube8MFeatureExtractor': 'video.yt8m_feature_extractor',
'YouTube8MEncoder': 'video.yt8m_model',
'InceptionVideoEncoder': 'video.inception',
'QuantizerEncoder': 'numeric.quantizer',
'CharEmbeddingEncoder': 'text.char'
}
Expand Down
84 changes: 84 additions & 0 deletions gnes/encoder/video/inception.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
# Tencent is pleased to support the open source community by making GNES available.
#
# Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List

import numpy as np
from PIL import Image

from ..base import BaseVideoEncoder
from ...helper import batching, get_first_available_gpu


class InceptionVideoEncoder(BaseVideoEncoder):
batch_size = 64

def __init__(self,
model_dir: str,
select_layer: str = 'PreLogitsFlatten',
*args,
**kwargs):
super().__init__(*args, **kwargs)
self.model_dir = model_dir
self.select_layer = select_layer
self.inception_size_x = 299
self.inception_size_y = 299

def post_init(self):
import tensorflow as tf
from ..image.inception_cores.inception_v4 import inception_v4
from ..image.inception_cores.inception_utils import inception_arg_scope
from .mixture_core.model import NetFV
import os
os.environ['CUDA_VISIBLE_DEVICES'] = str(get_first_available_gpu())

g = tf.Graph()
with g.as_default():
arg_scope = inception_arg_scope()
inception_v4.default_image_size = self.inception_size_x
self.inputs = tf.placeholder(
tf.float32,
(None, self.inception_size_x, self.inception_size_y, 3))

with tf.contrib.slim.arg_scope(arg_scope):
self.logits, self.end_points = inception_v4(
self.inputs, is_training=False, dropout_keep_prob=1.0)

config = tf.ConfigProto(log_device_placement=False)
if self.on_gpu:
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
self.saver = tf.train.Saver()
self.saver.restore(self.sess, self.model_dir)

def encode(self, data: List['np.ndarray'], *args,
**kwargs) -> List['np.ndarray']:
v_len = [len(v) for v in data]
pos_start = [0] + [sum(v_len[:i + 1]) for i in range(len(v_len) - 1)]
pos_end = [sum(v_len[:i + 1]) for i in range(len(v_len))]

_resize = lambda x: (np.array(Image.fromarray(x).resize((self.inception_size_x, self.inception_size_y)), dtype=np.float32) * 2 / 255. - 1.)

images = [_resize(im) for v in data for im in v]

@batching
def _encode(self, data):
_, end_points_ = self.sess.run((self.logits, self.end_points),
feed_dict={self.inputs: data})
return end_points_[self.select_layer]

encodes = _encode(images).astype(np.float32)

return [encodes[s:e].copy() for s, e in zip(pos_start, pos_end)]

0 comments on commit 3901078

Please sign in to comment.