Skip to content

herilalaina/mosaic_ml

Repository files navigation

Automated Machine Learning with MCTS

Build Status

Mosaic ML is a Python library for machine learning pipeline configuration using Monte Carlo Tree Search.

The original paper can be found here: https://www.ijcai.org/Proceedings/2019/457

Authors: Herilalaina Rakotoarison, Marc Schoenauer and Michèle Sebag

Installation

Requirements:

Installation:

pip install cython numpy scipy pytest
sudo apt-get install build-essential swig
pip install git+https://github.com/herilalaina/[email protected]
pip install git+https://github.com/herilalaina/mosaic_ml

Usage

The entry script is python examples/run_mosaic_ml.py -h.

--openml-task-id OPENML_TASK_ID
                      OpenML Task ID (default 252)
--overall-time-budget OVERALL_TIME_BUDGET
                      Overall time budget in seconds (default 360)
--eval-time-budget EVAL_TIME_BUDGET
                      Time budget for each machine learning evaluation
                      (default 100)
--memory-limit MEMORY_LIMIT
                      RAM Memory limit (default 3034)
--seed SEED           Seed for reproducibility (default 42)
--nb-init-metalearning NB_INIT_METALEARNING
                      Number of initial configurations from Auto-Sklearn
                      (default 25)
--ensemble-size ENSEMBLE_SIZE
                      Size of ensemble set (default 50)

Mosaic ML has three different components:

  • vanilla: MCTS for algorithm selection and Bayesian Optimization for hyperparameter tuning
python examples/run_mosaic_ml.py --nb-init-metalearning 0 --ensemble-size 1
  • metalearning: initialize with a set of configurations fetched from Auto-Sklearn then apply vanilla setting
python examples/run_mosaic_ml.py --nb-init-metalearning 25 --ensemble-size 1
  • ensemble (with metalearning): add an ensemble selection method (Caruana et al, 04) in the top of the metalearning setting
python examples/run_mosaic_ml.py --nb-init-metalearning 25 --ensemble-size 50