generated from hocherie/2d_grid_playground
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathecbf_control.py
253 lines (195 loc) · 8.74 KB
/
ecbf_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from dynamics import QuadDynamics
from controller import *
import numpy as np
import matplotlib.pyplot as plt
from cvxopt import matrix
from cvxopt import solvers
from matplotlib.patches import Ellipse
import time
import warnings
# warnings.filterwarnings("ignore")
a = 1
b = 1
safety_dist = 1
robot_radius = 0.5
is_crash = False # Sets title as Crashed when crashed once
class ECBF_control():
def __init__(self, state, goal=np.array([[0], [10]])):
self.state = state
self.shape_dict = {} #TODO: a, b
Kp = 6
Kd = 8
self.K = np.array([Kp, Kd])
self.goal=goal
self.use_safe = True
def compute_plot_z(self, obs):
plot_x = np.arange(-7.5, 7.5, 0.4)
plot_y = np.arange(-7.5, 7.5, 0.4)
xx, yy = np.meshgrid(plot_x, plot_y, sparse=True)
z = np.zeros(xx.shape)
for i in range(obs.shape[1]):
ztemp = h_func(xx - obs[0][i], yy - obs[1][i], a, b, safety_dist) > 0
z = z + ztemp
z = z / (obs.shape[1]-1)
p = {"x":plot_x, "y":plot_y, "z":z}
return p
def plot_h(self, plot_x, plot_y, z):
h = plt.contourf(plot_x, plot_y, z, [-1, 0, 1],colors=['#808080', '#A0A0A0', '#C0C0C0'])
plt.xlabel("X")
plt.ylabel("Y")
plt.pause(0.00000001)
def compute_h(self, obs=np.array([[0], [0]]).T):
h = np.zeros((obs.shape[1], 1))
for i in range(obs.shape[1]):
rel_r = np.atleast_2d(self.state["x"][:2]).T - obs[:, i].reshape(2,1)
# TODO: a, safety_dist, obs, b
hr = h_func(rel_r[0], rel_r[1], a, b, safety_dist)
h[i] = hr
return h
def compute_hd(self, obs, obs_v):
hd = np.zeros((obs.shape[1], 1))
for i in range(obs.shape[1]):
rel_r = np.atleast_2d(self.state["x"][:2]).T - obs[:, i].reshape(2,1)
rd = np.atleast_2d(self.state["xdot"][:2]).T - obs_v[:, i].reshape(2,1)
term1 = (4 * np.power(rel_r[0],3) * rd[0])/(np.power(a,4))
term2 = (4 * np.power(rel_r[1],3) * rd[1])/(np.power(b,4))
hd[i] = term1 + term2
return hd
def compute_A(self, obs):
A = np.empty((0,2))
for i in range(obs.shape[1]):
rel_r = np.atleast_2d(self.state["x"][:2]).T - obs[:, i].reshape(2,1)
A0 = (4 * np.power(rel_r[0], 3))/(np.power(a, 4))
A1 = (4 * np.power(rel_r[1], 3))/(np.power(b, 4))
Atemp = np.array([np.hstack((A0, A1))])
A = np.array(np.vstack((A, Atemp)))
A = -1 * matrix(A.astype(np.double), tc='d')
return A
def compute_h_hd(self, obs, obs_v):
h = self.compute_h(obs)
hd = self.compute_hd(obs, obs_v)
return np.vstack((h, hd)).astype(np.double)
def compute_b(self, obs, obs_v):
"""extra + K * [h hd]"""
rel_r = np.atleast_2d(self.state["x"][:2]).T - obs
rd = np.atleast_2d(self.state["xdot"][:2]).T - obs_v
extra = -( (12 * np.square(rel_r[0]) * np.square(rd[0]))/np.power(a, 4) + (12 * np.square(rel_r[1]) * np.square(rd[1]))/np.power(b, 4) )
extra = extra.reshape(obs.shape[1], 1)
b_ineq = extra - ( self.K[0] * self.compute_h(obs) + self.K[1] * self.compute_hd(obs, obs_v) )
b_ineq = -1 * matrix(b_ineq.astype(np.double), tc='d')
return b_ineq
def compute_safe_control(self,obs, obs_v, id):
# control in R^2
if self.use_safe:
try:
A = self.compute_A(obs) # For Exercise 1
b = self.compute_b(obs, obs_v) # For Exercise 1
u_des = self.compute_nom_control() # For Exercise 1
optimized_u = u_des #! REPLACE!! Exercise 1: Write Minimum Interventional Control
# Solution to Exercise 1
# Solution to Exercise 3
except:
print("Robot "+str(id)+": NO SOLUTION!!!")
optimized_u = [[0], [0]]
else:
optimized_u = self.compute_nom_control()
return optimized_u
def compute_nom_control(self, Kn=np.array([-0.08, -0.2])):
vd = Kn[0]*(np.atleast_2d(self.state["x"][:2]).T - self.goal)
u_nom = Kn[1]*(np.atleast_2d(self.state["xdot"][:2]).T - vd)
if np.linalg.norm(u_nom) > 0.05:
u_nom = (u_nom/np.linalg.norm(u_nom))* 0.05
return matrix(u_nom, tc='d')
class Robot_Sim():
def __init__(self, x_init, goal_init, robot_id):
self.id = robot_id
self.state = {"x": x_init,
"xdot": np.zeros(3,),
"theta": np.radians(np.array([0, 0, 0])), # ! hardcoded
"thetadot": np.radians(np.array([0, 0, 0])) # ! hardcoded
}
self.dyn = QuadDynamics()
self.goal = goal_init
self.ecbf = ECBF_control(self.state, self.goal)
self.state_hist = []
self.state_hist.append(self.state["x"])
self.new_obs = np.array([[1], [1]])
def robot_step(self, new_obs, obs_v):
u_hat_acc = self.ecbf.compute_safe_control(obs=new_obs, obs_v=obs_v, id=self.id)
u_hat_acc = np.ndarray.flatten(np.array(np.vstack((u_hat_acc,np.zeros((1,1)))))) # acceleration
assert(u_hat_acc.shape == (3,))
u_motor = go_to_acceleration(self.state, u_hat_acc, self.dyn.param_dict) # desired motor rate ^2
self.state = self.dyn.step_dynamics(self.state, u_motor)
self.ecbf.state = self.state
self.state_hist.append(self.state["x"])
return u_hat_acc
def update_obstacles(self, robots, obs, noisy = False):
obst = []
obs_v = []
for robot in robots:
if robot.id == self.id:
continue
if np.linalg.norm( robot.state["x"][:2] - self.state["x"][:2]) < robot_radius:
print("CRASH!!!!!!!!!!!!!!!!!!!!")
global is_crash
is_crash = True
obst_temp = robot.state["x"][:2]
if noisy:
obst_temp = obst_temp + (np.random.random(2)*2-1) # + np.array([[0.5], [0.5]]).T
obst.append(obst_temp.reshape(2,1))
obs_v.append(robot.state["xdot"][:2].reshape(2,1))
if not len(obs):
return {"obs":obst, "obs_v":obs_v}
if obs.ndim == 1:
obst.append(obs.reshape(2,1))
obs_v.append(np.array([[0], [0]]))
return {"obs":obst, "obs_v":obs_v}
for i in range(obs.shape[0]):
obst.append(obs[i].reshape(2,1))
obs_v.append(np.array([[0], [0]]))
obstacles = {"obs":obst, "obs_v":obs_v}
return obstacles
@np.vectorize
def h_func(r1, r2, a, b, safety_dist):
hr = np.power(r1,4)/np.power(a, 4) + \
np.power(r2, 4)/np.power(b, 4) - safety_dist
return hr
def plot_step(id, ecbf, new_obs, u_hat_acc, state_hist, plot_handle):
state_hist_plot = np.array(state_hist)
nom_cont = ecbf.compute_nom_control()
multiplier_const = 15
plot_handle.plot([state_hist_plot[-1, 0], state_hist_plot[-1, 0] + multiplier_const *
u_hat_acc[0]],
[state_hist_plot[-1, 1], state_hist_plot[-1, 1] + multiplier_const * u_hat_acc[1]], label="Safe", color='b')
plot_handle.plot([state_hist_plot[-1, 0], state_hist_plot[-1, 0] + multiplier_const *
nom_cont[0]],
[state_hist_plot[-1, 1], state_hist_plot[-1, 1] + multiplier_const * nom_cont[1]],label="Nominal",color='orange')
plot_handle.plot(state_hist_plot[:, 0], state_hist_plot[:, 1])
plot_handle.plot(ecbf.goal[0], ecbf.goal[1], '*r')
plot_handle.text(ecbf.goal[0]+0.2, ecbf.goal[1]+0.2, str(id),color='r')
# plot_handle.plot(state_hist_plot[-1, 0], state_hist_plot[-1, 1], '8k') # current
plot_handle.text(state_hist_plot[-1,0]+0.2, state_hist_plot[-1,1]+0.2, str(id))
if is_crash:
plot_handle.set_title("CRASHED!")
for i in range(new_obs.shape[1]):
plot_handle.plot(new_obs[0, i], new_obs[1, i], '8k') # obs
ell = Ellipse((state_hist_plot[-1, 0], state_hist_plot[-1, 1]), a*safety_dist+0.5, b*safety_dist+0.5, 0)
ell.set_alpha(0.3)
ell.set_facecolor(np.array([0, 1, 0]))
plot_handle.add_artist(ell)
ell = Ellipse((state_hist_plot[-1, 0], state_hist_plot[-1, 1]), robot_radius+0.5, robot_radius+0.5, 0)
ell.set_alpha(0.8)
ell.set_facecolor(np.array([1, 0, 0]))
plot_handle.add_artist(ell)
plot_handle.set_xlim([-10, 10])
plot_handle.set_ylim([-10, 10])
def solve_qp(P,q,G,h):
# Custom wrapper cvxopt.solvers.qp
# Takes in numpy array Converts to matrix double
P = matrix(P,tc='d')
q = matrix(q,tc='d')
G = matrix(G,tc='d')
h = matrix(h,tc='d')
solvers.options['show_progress'] = False
Sol = solvers.qp(P,q,G,h)
return Sol