-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7dfeda8
commit 941903d
Showing
1 changed file
with
97 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
## Sample Benchmark Datasets | ||
|
||
| id | id_train | ds_size | Urban Region | Country | Continent | Urban Type | Density | Roof Type | Download | | ||
|---- |---------|--------|------------------|-------------|--------------|-------------|---------|----------|-----------| | ||
| 1 | 364 | 399 | Kakuma | Kenya | Africa | Refugee Camp | Sparse | Metal | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_364/preprocessed.zip/) | | ||
| 2 | 370 | 168 | Denver | USA | America North | Peri-Urban | Grid | Shingles | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_370/preprocessed.zip/) | | ||
| 3 | 372 | 420 | Montevideo | Uruguay | America South | Urban | Grid | Cement | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_372/preprocessed.zip/) | | ||
| 4 | 373 | 399 | Montevideo Dense | Uruguay | America South | Urban | Dense | Cement | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_373/preprocessed.zip/) | | ||
| 5 | 391 | 231 | Kutupalong | Bangladesh | Asia | Refugee Camp | Dense | Mixed | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_391/preprocessed.zip/) | | ||
| 6 | 394 | 504 | Gornja Rijeka | Croatia | Europe | Rural | Sparse | Shingles | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_394/preprocessed.zip/) | | ||
| 7 | 397 | 756 | Melbourne | Australia | Oceania | Urban | Grid | Cement | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_397/preprocessed.zip/) | | ||
| 8 | 398 | 152 | Pemba | Tanzania | Africa | Rural | Sparse | Metal | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_398/preprocessed.zip/) | | ||
| 9 | 399 | 294 | Christchurch | New Zealand | Oceania | Peri-Urban | Sparse | Shingles | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_399/preprocessed.zip/) | | ||
| 10 | 456 | 147 | Pergamino | Argentina | America South | Peri-Urban | Grid | Mixed | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_456/preprocessed.zip/) | | ||
| 11 | 459 | 105 | Silvania | Brazil | America South | Rural | Sparse | Shingles | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_459/preprocessed.zip/) | | ||
| 12 | 462 | 147 | Desa Kulaba | Indonesia | Asia | Rural | Sparse | Metal | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_462/preprocessed.zip/) | | ||
| 13 | 463 | 168 | Roseau | Dominica | America Central | Peri-Urban | Sparse | Mixed | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_463/preprocessed.zip/) | | ||
| 14 | 485 | 147 | Pallabi Dhaka | Bangladesh | Asia | Urban | Dense | Mixed | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_485/preprocessed.zip/) | | ||
| 15 | 488 | 168 | Dhaka | Bangladesh | Asia | Urban | Dense | Mixed | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_488/preprocessed.zip/) | | ||
| 16 | 489 | 147 | Ggaba | Uganda | Africa | Peri-Urban | Dense | Mixed | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_489/preprocessed.zip/) | | ||
| 17 | 529 | 546 | Inagi | Japan | Asia | Peri-Urban | Sparse | Mixed | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_529/preprocessed.zip/) | | ||
| 18 | 508 | 226 | Tchiniambi | DRC | Africa | Peri-Urban | Dense | Metal | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_508/preprocessed.zip/) | | ||
| 19 | 539 | 672 | Staraya Russa | Russia | Europe | Rural | Sparse | Mixed | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_539/preprocessed.zip/) | | ||
| 20 | 530 | 189 | Banyuwangi | Indonesia | Asia | Urban | Dense | Shingles | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_530/preprocessed.zip/) | | ||
| 21 | 526 | 672 | Dzaleka | Malawi | Africa | Refugee Camp | Dense | Metal | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_526/preprocessed.zip/) | | ||
| 22 | 523 | 252 | Bogota | Colombia | America South | Urban | Grid | Mixed | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_523/preprocessed.zip/) | | ||
| 23 | 524 | 315 | Soudure | Niger | Africa | Rural | Dense | Mixed | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_524/preprocessed.zip/) | | ||
| 24 | 525 | 420 | Quincy | USA | America North | Peri-Urban | Grid | Shingles | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_525/preprocessed.zip/) | | ||
| 25 | 528 | 756 | Ngaoundere | Cameroon | Africa | Peri-Urban | Grid | Metal | [Download](https://fair-dev.hotosm.org/api/v1/workspace/download/training_528/preprocessed.zip/) | | ||
|
||
Source and Credit : Anna Zanchetta | ||
|
||
|
||
## **How to Get the Data** | ||
|
||
You can use the following Python script to generate download links for all available training datasets: | ||
|
||
```python | ||
# List of training IDs from the table | ||
training_ids = [ | ||
364, 370, 372, 373, 391, 394, 397, 398, 399, 456, | ||
459, 462, 463, 485, 488, 489, 529, 508, 539, 530, | ||
526, 523, 524, 525, 528 | ||
] | ||
|
||
base_url = "https://fair-dev.hotosm.org/api/v1/workspace/download/training_{}/preprocessed.zip/" | ||
|
||
download_links = [base_url.format(train_id) for train_id in training_ids] | ||
|
||
for link in download_links: | ||
print(link) | ||
``` | ||
|
||
if you want to get area of interest for those training area , it would be inside `training_{}/aois.geojson` | ||
|
||
& Training details can be found from API call like this : https://fair-dev.hotosm.org/api/v1/training/364/ | ||
|
||
|
||
# **Dataset Structure & Download Guide** | ||
|
||
## **Overview** | ||
This dataset consists of **256x256 pixel image tiles** that follow the **Mercator tiling scheme**. Each tile is associated with: | ||
- **Imagery ("chips/")** | ||
- **Vector labels ("labels/")** | ||
- **Binary masks ("binarymasks/") (optional)** | ||
|
||
The filenames follow this **naming convention**: | ||
|
||
**OAM-{mercantile_tile_x}-{mercantile_tile_y}-{zoom_level}.ext** | ||
|
||
Where: | ||
- **OAM**: Prefix indicating OpenAerialMap (or similar sources). | ||
- **mercantile_tile_x / mercantile_tile_y**: Tile coordinates in the Mercator grid. | ||
- **zoom_level**: The zoom level of the tile. | ||
- **ext**: `.tif` (imagery), `.geojson` (labels), `.mask.tif` (binary masks). | ||
|
||
--- | ||
|
||
## **Folder Structure** | ||
|
||
|
||
### **1. Chips (`chips/`)** | ||
- **Contains satellite/aerial imagery tiles**. | ||
- Each `.tif` file corresponds to a **specific Mercator grid tile**. | ||
- Example: `OAM-1251460-1026614-21.tif`. | ||
|
||
### **2. Labels (`labels/`)** | ||
- **Contains vector annotations (GeoJSON)**. | ||
- Each file is clipped to the **exact boundary** of the corresponding image tile. | ||
- Example: `OAM-1251450-1026604-21.geojson` matches `OAM-1251450-1026604-21.tif`. | ||
|
||
### **3. Binary Masks (`binarymasks/`)** | ||
- **Rasterized (burned) version of the labels**. | ||
- Binary format (**0/1**) indicating building footprints. | ||
- **Not required** if users prefer to generate masks from `chips/` and `labels/`. | ||
- Example: `OAM-1251456-1026606-21.mask.tif`. | ||
|