Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Cog] some minor fixes and nits #9466

Merged
merged 8 commits into from
Sep 23, 2024
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 10 additions & 11 deletions src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
Original file line number Diff line number Diff line change
Expand Up @@ -316,18 +316,19 @@ def encode_prompt(
def prepare_latents(
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)

shape = (
batch_size,
(num_frames - 1) // self.vae_scale_factor_temporal + 1,
num_channels_latents,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)

if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
Expand Down Expand Up @@ -504,10 +505,10 @@ def __call__(
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
The height in pixels of the generated image. This is set to 480 by default for the best results.
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
The width in pixels of the generated image. This is set to 720 by default for the best results.
num_frames (`int`, defaults to `48`):
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
Expand Down Expand Up @@ -577,8 +578,6 @@ def __call__(
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
Comment on lines 593 to -591
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We don't need it because height and width are already at their default values.

num_videos_per_prompt = 1

# 1. Check inputs. Raise error if not correct
Expand Down
52 changes: 25 additions & 27 deletions src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
Original file line number Diff line number Diff line change
Expand Up @@ -207,6 +207,9 @@ def __init__(
self.vae_scale_factor_temporal = (
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
)
self.vae_scaling_factor_image = (
self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7
)
Comment on lines +210 to +212
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is beneficial for scenarios where we want to run the pipeline without the VAE.


self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)

Expand Down Expand Up @@ -348,6 +351,12 @@ def prepare_latents(
generator: Optional[torch.Generator] = None,
latents: Optional[torch.Tensor] = None,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)

num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
shape = (
batch_size,
Expand All @@ -357,12 +366,6 @@ def prepare_latents(
width // self.vae_scale_factor_spatial,
)

if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)

image = image.unsqueeze(2) # [B, C, F, H, W]

if isinstance(generator, list):
Expand All @@ -373,7 +376,7 @@ def prepare_latents(
image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in image]

image_latents = torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
image_latents = self.vae.config.scaling_factor * image_latents
image_latents = self.vae_scaling_factor_image * image_latents

padding_shape = (
batch_size,
Expand All @@ -397,7 +400,7 @@ def prepare_latents(
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
latents = 1 / self.vae.config.scaling_factor * latents
latents = 1 / self.vae_scaling_factor_image * latents

frames = self.vae.decode(latents).sample
return frames
Expand Down Expand Up @@ -438,7 +441,6 @@ def check_inputs(
width,
negative_prompt,
callback_on_step_end_tensor_inputs,
video=None,
latents=None,
prompt_embeds=None,
negative_prompt_embeds=None,
Expand Down Expand Up @@ -494,9 +496,6 @@ def check_inputs(
f" {negative_prompt_embeds.shape}."
)

if video is not None and latents is not None:
raise ValueError("Only one of `video` or `latents` should be provided")

# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.fuse_qkv_projections
def fuse_qkv_projections(self) -> None:
r"""Enables fused QKV projections."""
Expand Down Expand Up @@ -584,18 +583,18 @@ def __call__(

Args:
image (`PipelineImageInput`):
The input video to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
The height in pixels of the generated image. This is set to 480 by default for the best results.
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
The width in pixels of the generated image. This is set to 720 by default for the best results.
num_frames (`int`, defaults to `48`):
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
Expand Down Expand Up @@ -665,20 +664,19 @@ def __call__(
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
num_videos_per_prompt = 1

# 1. Check inputs. Raise error if not correct
self.check_inputs(
image,
prompt,
height,
width,
negative_prompt,
callback_on_step_end_tensor_inputs,
prompt_embeds,
negative_prompt_embeds,
image=image,
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
latents=latents,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
self._guidance_scale = guidance_scale
self._interrupt = False
Expand Down
41 changes: 21 additions & 20 deletions src/diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,7 @@ def __init__(
self.register_modules(
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
)

self.vae_scale_factor_spatial = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
)
Expand Down Expand Up @@ -353,6 +354,12 @@ def prepare_latents(
latents: Optional[torch.Tensor] = None,
timestep: Optional[torch.Tensor] = None,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)

num_frames = (video.size(2) - 1) // self.vae_scale_factor_temporal + 1 if latents is None else latents.size(1)

shape = (
Expand All @@ -363,12 +370,6 @@ def prepare_latents(
width // self.vae_scale_factor_spatial,
)

if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)

if latents is None:
if isinstance(generator, list):
if len(generator) != batch_size:
Expand Down Expand Up @@ -586,10 +587,10 @@ def __call__(
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
The height in pixels of the generated image. This is set to 480 by default for the best results.
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
The width in pixels of the generated image. This is set to 720 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
Expand Down Expand Up @@ -651,20 +652,20 @@ def __call__(
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
num_videos_per_prompt = 1

# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
strength,
negative_prompt,
callback_on_step_end_tensor_inputs,
prompt_embeds,
negative_prompt_embeds,
prompt=prompt,
height=height,
width=width,
strength=strength,
negative_prompt=negative_prompt,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
video=video,
latents=latents,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
self._guidance_scale = guidance_scale
self._interrupt = False
Expand Down
Loading