Skip to content

huiyegit/UAV3D

Repository files navigation

[NeurIPS 2024] UAV3D: A Large-scale 3D Perception Benchmark for Unmanned Aerial Vehicles

UAV3D is a public large-scale benchmark designed for 3D perception tasks from Unmanned Aerial Vehicle (UAV) platforms. This benchmark comprises the synthetic data and 3D perception algorithms, aiming to facilitate research in both single UAV and collaborative UAVs 3D perception tasks.

News

Installation

Prepare dataset

Training and evaluation

Main Results

3D Object Detection (UAV3D val)

Model Backbone Size mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ Checkpoint Log
PETR Res-50 704×256 0.512 0.571 0.741 0.173 0.072 link link
BEVFusion Res-50 704×256 0.487 0.458 0.615 0.152 1.000 link link
DETR3D Res-50 704×256 0.430 0.509 0.791 0.187 0.100 link link
PETR Res-50 800×450 0.581 0.632 0.625 0.160 0.064 link link
BEVFusion Res-101 800×450 0.536 0.582 0.521 0.154 0.343 link link
DETR3D Res-101 800×450 0.618 0.671 0.494 0.158 0.070 link link

3D Object Tracking (UAV3D val)

Model Backbone Size AMOTA↑ AMOTP↓ MOTA↑ MOTP↓ TID↓ LGD↓ det_result Log
PETR Res-50 704×256 0.199 1.294 0.195 0.794 1.280 2.970 link link
BEVFusion Res-50 704×256 0.566 1.137 0.501 0.695 0.790 1.600 link link
DETR3D Res-50 704×256 0.089 1.382 0.121 0.800 1.540 3.530 link link
PETR Res-50 800×450 0.291 1.156 0.256 0.677 1.090 2.550 link link
BEVFusion Res-101 800×450 0.606 1.006 0.540 0.627 0.700 1.390 link link
DETR3D Res-101 800×450 0.262 1.123 0.238 0.561 1.140 2.720 link link

Collaborative 3D Object Detection (UAV3D val)

Model mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ AP@IoU=0.5↑ AP@IoU=0.7↑ Checkpoint Log
Lower-bound 0.544 0.556 0.540 0.147 0.578 0.457 0.140 link link
When2com 0.550 0.507 0.534 0.156 0.679 0.461 0.166 link link
Who2com 0.546 0.597 0.541 0.150 0.263 0.453 0.141 link link
V2VNet 0.647 0.628 0.508 0.167 0.533 0.545 0.141 link link
DiscoNet 0.700 0.689 0.423 0.143 0.422 0.649 0.247 link link
Upper-bound 0.720 0.748 0.391 0.106 0.117 0.673 0.316 link link

Collaborative 3D Object Tracking (UAV3D val)

Model AMOTA↑ AMOTP↓ MOTA↑ MOTP↓ TID↓ LGD↓ det_result Log
Lower-bound 0.644 1.018 0.593 0.611 0.620 1.280 link link
When2com 0.646 1.012 0.595 0.618 0.590 1.200 link link
Who2com 0.648 1.012 0.602 0.623 0.580 1.200 link link
V2VNet 0.782 0.803 0.735 0.587 0.360 0.710 link link
DiscoNet 0.809 0.703 0.766 0.516 0.300 0.590 link link
Upper-bound 0.812 0.672 0.781 0.476 0.300 0.570 link link

Citation

If you find this repository useful, please consider giving a star ⭐ and citation 📘:

@inproceedings{uav3d2024,
  title={UAV3D: A Large-scale 3D Perception Benchmark for Unmanned Aerial Vehicles},
  author={Hui Ye and Raj Sunderraman and Shihao Ji},
  booktitle={The 38th Conference on Neural Information Processing Systems (NeurIPS)},
  year={2024}
}

Acknowledgement

In collecting UAV3D, we received valuable help and suggestions from the authors of CoPerception-UAV and Where2comm.

For 3D object detection task, our implementation is based on PETR, BEVFusion, and DETR3D.

For Collaborative 3D object detection task, our implementation is based on BEVFusion and CoPerception.

For object tracking task, our implementation is based on CenterPoint.

The software and data were created by Georgia State University Research Foundation under Army Research Laboratory (ARL) Award Numbers W911NF-22-2-0025 and W911NF-23-2-0224. ARL, as the Federal awarding agency, reserves a royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use this software for Federal purposes, and to authorize others to do so in accordance with 2 CFR 200.315(b).