Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
Stable Diffusion 2.1 unCLIP Release
  • Loading branch information
hardmaru authored Mar 24, 2023
1 parent 67fdc82 commit 0bbbcbb
Show file tree
Hide file tree
Showing 9 changed files with 56 additions and 0 deletions.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added assets/stable-samples/stable-unclip/panda.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
56 changes: 56 additions & 0 deletions doc/UNCLIP.MD
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
### Stable unCLIP

[unCLIP](https://openai.com/dall-e-2/) is the approach behind OpenAI's [DALL·E 2](https://openai.com/dall-e-2/),
trained to invert CLIP image embeddings.
We finetuned SD 2.1 to accept a CLIP ViT-L/14 image embedding in addition to the text encodings.
This means that the model can be used to produce image variations, but can also be combined with a text-to-image
embedding prior to yield a full text-to-image model at 768x768 resolution.
We provide two models, trained on OpenAI CLIP-L and OpenCLIP-H image embeddings, respectively,
available from [https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip](https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip/tree/main).
To use them, download from Hugging Face, and put and the weights into the `checkpoints` folder.
#### Image Variations
![image-variations-l-1](../assets/stable-samples/stable-unclip/unclip-variations.png)

Run

```
streamlit run scripts/streamlit/stableunclip.py
```
to launch a streamlit script than can be used to make image variations with both models (CLIP-L and OpenCLIP-H).
These models can process a `noise_level`, which specifies an amount of Gaussian noise added to the CLIP embeddings.
This can be used to increase output variance as in the following examples.

![image-variations-noise](../assets/stable-samples/stable-unclip/unclip-variations_noise.png)


### Stable Diffusion Meets Karlo
![panda](../assets/stable-samples/stable-unclip/panda.jpg)

Recently, [KakaoBrain](https://kakaobrain.com/) openly released [Karlo](https://github.com/kakaobrain/karlo), a pretrained, large-scale replication of [unCLIP](https://arxiv.org/abs/2204.06125).
We introduce _Stable Karlo_, a combination of the Karlo CLIP image embedding prior, and Stable Diffusion v2.1-768.

To run the model, first download the KARLO checkpoints
```shell
mkdir -p checkpoints/karlo_models
cd checkpoints/karlo_models
wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/096db1af569b284eb76b3881534822d9/ViT-L-14.pt
wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/0b62380a75e56f073e2844ab5199153d/ViT-L-14_stats.th
wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/85626483eaca9f581e2a78d31ff905ca/prior-ckpt-step%3D01000000-of-01000000.ckpt
cd ../../
```
and the finetuned SD2.1 unCLIP-L checkpoint from [here](https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip/blob/main/sd21-unclip-l.ckpt), and put the ckpt into the `checkpoints folder`

Then, run

```
streamlit run scripts/streamlit/stableunclip.py
```
and pick the `use_karlo` option in the GUI.
The script optionally supports sampling from the full Karlo model. To use it, download the 64x64 decoder and 64->256 upscaler
via
```shell
cd checkpoints/karlo_models
wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/efdf6206d8ed593961593dc029a8affa/decoder-ckpt-step%3D01000000-of-01000000.ckpt
wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/4226b831ae0279020d134281f3c31590/improved-sr-ckpt-step%3D1.2M.ckpt
cd ../../
```

0 comments on commit 0bbbcbb

Please sign in to comment.