-
Notifications
You must be signed in to change notification settings - Fork 38
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c47c4f1
commit ec10755
Showing
63 changed files
with
10,120 additions
and
133 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,4 @@ | ||
.DS_Store | ||
*.pyc | ||
*.pyc.vscode/ | ||
.idea/ | ||
.vscode/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,314 @@ | ||
''' | ||
Copyright (C) 2010-2021 Alibaba Group Holding Limited. | ||
''' | ||
|
||
import os, sys | ||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | ||
|
||
import torch | ||
import torch.utils.data | ||
import torch.utils.data.distributed | ||
import torchvision.transforms as transforms | ||
import torchvision.datasets as datasets | ||
import numpy as np | ||
import PIL | ||
|
||
import hotfix.transforms | ||
import math | ||
|
||
from . import autoaugment | ||
|
||
_IMAGENET_PCA = { | ||
'eigval': torch.Tensor([0.2175, 0.0188, 0.0045]), | ||
'eigvec': torch.Tensor([ | ||
[-0.5675, 0.7192, 0.4009], | ||
[-0.5808, -0.0045, -0.8140], | ||
[-0.5836, -0.6948, 0.4203], | ||
]) | ||
} | ||
lighting_param = 0.1 | ||
|
||
params_dict = { | ||
'imagenet': { | ||
'train_dir': os.path.expanduser('~/data/imagenet/train/'), | ||
'val_dir': os.path.expanduser('~/data/imagenet/val/'), | ||
'num_train_samples': 1281167, | ||
'num_val_samples': 50000, | ||
'num_classes': 1000, | ||
}, | ||
'myimagenet100': { | ||
'train_dir': os.path.expanduser('~/data/myimagenet100/train/'), | ||
'val_dir': os.path.expanduser('~/data/myimagenet100/val/'), | ||
'num_train_samples': 129395, | ||
'num_val_samples': 5000, | ||
'num_classes': 100, | ||
}, | ||
'cifar10': { | ||
'train_dir': os.path.expanduser('~/data/pytorch_cifar10'), | ||
'val_dir': os.path.expanduser('~/data/pytorch_cifar10'), | ||
'num_train_samples': 50000, | ||
'num_val_samples': 10000, | ||
'num_classes': 10, | ||
}, | ||
|
||
'cifar100': { | ||
'train_dir': os.path.expanduser('~/data/pytorch_cifar100'), | ||
'val_dir': os.path.expanduser('~/data/pytorch_cifar100'), | ||
'num_train_samples': 50000, | ||
'num_val_samples': 10000, | ||
'num_classes': 100, | ||
}, | ||
} | ||
|
||
|
||
class Lighting(object): | ||
"""Lighting noise(AlexNet - style PCA - based noise)""" | ||
|
||
def __init__(self, alphastd, eigval, eigvec): | ||
self.alphastd = alphastd | ||
self.eigval = eigval | ||
self.eigvec = eigvec | ||
|
||
def __call__(self, img): | ||
if self.alphastd == 0: | ||
return img | ||
|
||
alpha = img.new().resize_(3).normal_(0, self.alphastd) | ||
rgb = self.eigvec.type_as(img).clone() \ | ||
.mul(alpha.view(1, 3).expand(3, 3)) \ | ||
.mul(self.eigval.view(1, 3).expand(3, 3)) \ | ||
.sum(1).squeeze() | ||
|
||
return img.add(rgb.view(3, 1, 1).expand_as(img)) | ||
|
||
|
||
def load_imagenet_like(dataset_name, set_name, train_augment, random_erase, auto_augment, | ||
data_dir, input_image_size, input_image_crop, rank, world_size, | ||
shuffle, batch_size, num_workers, drop_last, dataset_ImageFolderClass, | ||
dataloader_testing): | ||
resize_image_size = int(math.ceil(input_image_size / input_image_crop)) | ||
transforms_normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | ||
|
||
if train_augment == False: | ||
assert random_erase == False and auto_augment == False | ||
transform_list = [transforms.Resize(resize_image_size, interpolation=PIL.Image.BICUBIC), transforms.CenterCrop(input_image_size), | ||
transforms.ToTensor(), transforms_normalize] | ||
else: | ||
if auto_augment: | ||
transform_list = [transforms.RandomResizedCrop(input_image_size, interpolation=PIL.Image.BICUBIC), | ||
transforms.RandomHorizontalFlip(), | ||
autoaugment.ImageNetPolicy(), | ||
transforms.ToTensor(), | ||
Lighting(lighting_param, _IMAGENET_PCA['eigval'], _IMAGENET_PCA['eigvec']), | ||
transforms_normalize] | ||
else: | ||
transform_list = [transforms.RandomResizedCrop(input_image_size, interpolation=PIL.Image.BICUBIC), | ||
transforms.RandomHorizontalFlip(), | ||
transforms.ColorJitter(0.4, 0.4, 0.4), | ||
transforms.ToTensor(), | ||
Lighting(lighting_param, _IMAGENET_PCA['eigval'], _IMAGENET_PCA['eigvec']), | ||
transforms_normalize] | ||
pass | ||
if random_erase: | ||
transform_list.append(hotfix.transforms.RandomErasing()) | ||
pass | ||
|
||
transformer = transforms.Compose(transform_list) | ||
|
||
the_dataset = dataset_ImageFolderClass(data_dir, transformer) | ||
|
||
if dataloader_testing: | ||
tmp_indices = np.arange(0, len(the_dataset)) | ||
kk = 100 if set_name == 'train' else 10 | ||
tmp_indices = np.array_split(tmp_indices, kk)[0] | ||
the_dataset = torch.utils.data.Subset(the_dataset, indices=tmp_indices) | ||
|
||
if shuffle: | ||
sampler = torch.utils.data.distributed.DistributedSampler(the_dataset, | ||
num_replicas=world_size, | ||
rank=rank) | ||
else: | ||
sampler = None | ||
if world_size > 1: | ||
tmp_indices = np.arange(0, len(the_dataset)) | ||
tmp_indices = np.array_split(tmp_indices, world_size)[rank] | ||
the_dataset = torch.utils.data.Subset(the_dataset, indices=tmp_indices) | ||
|
||
pass | ||
pass | ||
|
||
data_loader = torch.utils.data.DataLoader(the_dataset, batch_size=batch_size, shuffle=False, | ||
num_workers=num_workers, pin_memory=True, sampler=sampler, | ||
drop_last=drop_last) | ||
|
||
return {'data_loader': data_loader, | ||
'sampler': sampler, | ||
} | ||
|
||
def load_cifar_like(dataset_name, set_name, train_augment, random_erase, auto_augment, | ||
data_dir, input_image_size, input_image_crop, rank, world_size, | ||
shuffle, batch_size, num_workers, drop_last, dataset_ImageFolderClass, | ||
dataloader_testing=False): | ||
|
||
transforms_normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]) | ||
|
||
if train_augment == False: | ||
assert random_erase == False and auto_augment == False | ||
if input_image_size > 32: | ||
transform_list = [transforms.Resize(input_image_size, interpolation=PIL.Image.BICUBIC)] | ||
else: | ||
transform_list = [] | ||
|
||
transform_list += [transforms.ToTensor(), transforms_normalize] | ||
else: | ||
|
||
if input_image_size > 32: | ||
resize_image_size = round(input_image_size / 0.75) | ||
transform_list = [transforms.Resize(resize_image_size, interpolation=PIL.Image.BICUBIC)] | ||
transform_list += [transforms.RandomResizedCrop(input_image_size, scale=(0.8, 1.0), | ||
interpolation=PIL.Image.BICUBIC)] | ||
else: | ||
transform_list = [transforms.RandomCrop(input_image_size, padding=4)] | ||
|
||
if auto_augment: | ||
autoaugment_policy = autoaugment.CIFAR10Policy() | ||
transform_list += [transforms.RandomHorizontalFlip(), autoaugment_policy, | ||
transforms.ToTensor(), | ||
transforms_normalize] | ||
else: | ||
transform_list += [transforms.RandomHorizontalFlip(), | ||
transforms.ToTensor(), | ||
transforms_normalize] | ||
pass | ||
if random_erase: | ||
transform_list.append(hotfix.transforms.RandomErasing()) | ||
pass | ||
|
||
transformer = transforms.Compose(transform_list) | ||
|
||
if dataset_name == 'cifar10': | ||
the_dataset = datasets.CIFAR10(root=data_dir, train=set_name=='train', download=True, transform=transformer) | ||
elif dataset_name == 'cifar100': | ||
the_dataset = datasets.CIFAR100(root=data_dir, train=set_name=='train', download=True, transform=transformer) | ||
else: | ||
raise ValueError('Unknown dataset_name=' + dataset_name) | ||
|
||
if dataloader_testing: | ||
tmp_indices = np.arange(0, len(the_dataset)) | ||
kk = 100 if set_name == 'train' else 10 | ||
tmp_indices = np.array_split(tmp_indices, kk)[0] | ||
the_dataset = torch.utils.data.Subset(the_dataset, indices=tmp_indices) | ||
|
||
if shuffle: | ||
sampler = torch.utils.data.distributed.DistributedSampler(the_dataset, | ||
num_replicas=world_size, | ||
rank=rank) | ||
else: | ||
sampler = None | ||
if world_size > 1: | ||
tmp_indices = np.arange(0, len(the_dataset)) | ||
tmp_indices = np.array_split(tmp_indices, world_size)[rank] | ||
the_dataset = torch.utils.data.Subset(the_dataset, indices=tmp_indices) | ||
|
||
pass | ||
pass | ||
|
||
data_loader = torch.utils.data.DataLoader(the_dataset, batch_size=batch_size, shuffle=False, | ||
num_workers=num_workers, pin_memory=True, sampler=sampler, | ||
drop_last=drop_last) | ||
|
||
return {'data_loader': data_loader, | ||
'sampler': sampler, | ||
} | ||
|
||
|
||
def _get_data_(dataset_name=None, set_name=None, batch_size=None, train_augment=False, random_erase=False, auto_augment=False, | ||
input_image_size=224, input_image_crop=0.875, rank=0, world_size=1, shuffle=False, | ||
num_workers=6, drop_last=False, dataset_ImageFolderClass=None, dataloader_testing=False, argv=None): | ||
|
||
if dataset_name in ['imagenet', 'myimagenet100']: | ||
dataset_params = params_dict[dataset_name] | ||
data_dir = dataset_params['train_dir'] if set_name == 'train' else dataset_params['val_dir'] | ||
|
||
if dataset_ImageFolderClass is None: | ||
dataset_ImageFolderClass = datasets.ImageFolder | ||
|
||
return load_imagenet_like(dataset_name=dataset_name, set_name=set_name, train_augment=train_augment, | ||
random_erase=random_erase, auto_augment=auto_augment, | ||
data_dir=data_dir, | ||
input_image_size=input_image_size, input_image_crop=input_image_crop, rank=rank, | ||
world_size=world_size, shuffle=shuffle, batch_size=batch_size, | ||
num_workers=num_workers, drop_last=drop_last, | ||
dataset_ImageFolderClass=dataset_ImageFolderClass, | ||
dataloader_testing=dataloader_testing) | ||
|
||
if dataset_name in ['cifar10', 'cifar100']: | ||
dataset_params = params_dict[dataset_name] | ||
data_dir = dataset_params['train_dir'] if set_name == 'train' else dataset_params['val_dir'] | ||
|
||
if dataset_ImageFolderClass is None: | ||
dataset_ImageFolderClass = datasets.ImageFolder | ||
|
||
return load_cifar_like(dataset_name=dataset_name, set_name=set_name, train_augment=train_augment, | ||
random_erase=random_erase, auto_augment=auto_augment, | ||
data_dir=data_dir, | ||
input_image_size=input_image_size, input_image_crop=input_image_crop, rank=rank, | ||
world_size=world_size, shuffle=shuffle, batch_size=batch_size, | ||
num_workers=num_workers, drop_last=drop_last, | ||
dataset_ImageFolderClass=dataset_ImageFolderClass, | ||
dataloader_testing=dataloader_testing) | ||
|
||
|
||
def get_data(opt, argv): | ||
dataset_name = opt.dataset | ||
batch_size = opt.batch_size_per_gpu | ||
random_erase = opt.random_erase | ||
auto_augment = opt.auto_augment | ||
input_image_size = opt.input_image_size | ||
input_image_crop = opt.input_image_crop | ||
rank = opt.rank | ||
world_size = opt.world_size | ||
num_workers = opt.workers_per_gpu | ||
|
||
# check if independent training | ||
if opt.independent_training: | ||
rank = 0 | ||
world_size = 1 | ||
|
||
|
||
# load train set | ||
set_name = 'train' | ||
if opt.no_data_augment: | ||
train_augment = False | ||
else: | ||
train_augment = True | ||
shuffle = True | ||
drop_last = True | ||
|
||
train_dataset_info = _get_data_(dataset_name, set_name, batch_size, train_augment, random_erase, auto_augment, | ||
input_image_size, input_image_crop, rank, world_size, shuffle, | ||
num_workers, drop_last, dataloader_testing=opt.dataloader_testing, argv=argv) | ||
|
||
|
||
# load val set | ||
set_name = 'val' | ||
train_augment = False | ||
random_erase = False | ||
auto_augment = False | ||
shuffle = False | ||
drop_last = False | ||
|
||
val_dataset_info = _get_data_(dataset_name, set_name, batch_size, train_augment, random_erase, auto_augment, | ||
input_image_size, input_image_crop, rank, world_size, shuffle, | ||
num_workers, drop_last, dataloader_testing=opt.dataloader_testing, argv=argv) | ||
|
||
return { | ||
'train_loader' : train_dataset_info['data_loader'], | ||
'val_loader' : val_dataset_info['data_loader'], | ||
'train_sampler': train_dataset_info['sampler'], | ||
'val_sampler': val_dataset_info['sampler'], | ||
} | ||
|
||
|
||
|
||
|
Oops, something went wrong.