-
-
Notifications
You must be signed in to change notification settings - Fork 42
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[research] Decorate module output #1384
Comments
Discussion 1 summary@kpagacz and I discussed the issue and decided to first focus on allowing app developers to provide arbitrary code to modify the module’s output. Interactivity is not yet included. We agreed almost immediately that decorators need to be provided through the 1. Decorator passed as expression listtm_xy <- function(
...
decorator = expression(
ggplot2::flip_axis(...) +
ggplot2::ggtitle(...) +
ggplot2::theme(...)
)
) Above call could be passed to the server and in the reactive which produces the plot call it would look something like this: plot_call <- ...
if (length(decorator)) {
plot_call <- substitute(p <- p + <decorator>)
}
2. Decorator as a functiontm_xy <- function(
...,
decorator = expression(
function(plot, data) {
plot +
ggplot2::flip_axis(...) +
ggplot2::ggtitle(...) +
ggplot2::theme(...) +
ggplot2::geom_points(data, aes(x = x, y = y))
}
)
) Inside of the module above would be consumed in the following way. Because function is passed as expression it will be added to SRC for reproducibility. substitute(
p <- decorate(iris, p),
list(
decorate = eval(decorator)
)
)
3. teal_transform_moduleIf we consider that some decorations will depend on the app user input (limiting axes range, changing title etc.) then
|
Discussion 2 summaryAfter short meeting, we agreed that in order to execute any custom call inside of the teal_module one of the following is needed:
|
Conclusions from the last (general) meeting
Initial apps showing apps the problemInitial app for plot decoration (simple case, one output)library(teal)
identity_decorator <- list(
ui = function(id) NULL,
server = function(id, data) {
data
}
)
tm_decorated_plot <- function(label = "module", decorator = identity_decorator) {
module(
label = label,
ui = function(id, decorator) {
ns <- NS(id)
div(
selectInput(ns("dataname"), label = "select dataname", choices = NULL),
selectInput(ns("x"), label = "select x", choices = NULL),
selectInput(ns("y"), label = "select y", choices = NULL),
decorator$ui(ns("decorate")),
plotOutput(ns("plot")),
verbatimTextOutput(ns("text"))
)
},
server = function(id, data, decorator) {
moduleServer(id, function(input, output, session) {
observeEvent(data(), {
updateSelectInput(inputId = "dataname", choices = teal.data::datanames(data()))
})
observeEvent(input$dataname, {
updateSelectInput(inputId = "x", choices = colnames(data()[[input$dataname]]))
updateSelectInput(inputId = "y", label = "select y", choices = colnames(data()[[input$dataname]]))
})
q1 <- reactive({
req(input$dataname, input$x, input$y)
data() |>
within(
{
plot <- ggplot2::ggplot(dataname, ggplot2::aes(x = x, y = y)) +
ggplot2::geom_point()
},
dataname = as.name(input$dataname),
x = as.name(input$x),
y = as.name(input$y)
)
})
q2 <- decorator$server("decorate", data = q1)
plot_r <- reactive({
req(q2())
q2()[["plot"]]
})
output$plot <- renderPlot(plot_r())
output$text <- renderText({
teal.code::get_code(q2())
})
})
},
ui_args = list(decorator = decorator),
server_args = list(decorator = decorator)
)
}
app <- init(
data = teal_data(iris = iris, mtcars = mtcars),
modules = modules(
tm_decorated_plot("1")
)
)
runApp(app)
|
This comment was marked as resolved.
This comment was marked as resolved.
This comment was marked as resolved.
This comment was marked as resolved.
Conclusions from the last meeting
Example app with simplified teal_transform_module constructorsstatic_decorator <- teal_transform_module(server = function(id, data) { moduleServer(id, function(input, output, session) { reactive({ req(data()) data() |> within({ plot <- plot + ggtitle("This is title") + xlab("x axis") }) }) }) } ) static_decorator_lang <- teal_transform_module(server = quote(plot <- plot + interactive_decorator <- teal_transform_module( interactive_decorator_lang <- teal_transform_module( gg_xlab_decorator <- function(output_name) { failing_decorator <- teal_transform_module( tm_decorated_plot <- function(label = "module", transforms = list(), decorator = teal_transform_module()) {
) library(ggplot2) shinyApp(app$ui, app$server)
|
Closing this issue as research has been done |
closes #1383 #1384 Companion PRs: - insightsengineering/teal.modules.general#795 <details> <summary>example tmg app</summary> ```r pkgload::load_all("teal") pkgload::load_all("teal.modules.general") library(teal.widgets) data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[c("ADSL")] footnote_regression <- teal_transform_module( server = make_teal_transform_server(expression( plot <- plot + labs(caption = deparse(summary(fit)[[1]])) )) ) fact_vars_adsl <- names(Filter(isTRUE, sapply(data[["ADSL"]], is.factor))) vars <- choices_selected(variable_choices(data[["ADSL"]], fact_vars_adsl)) app <- init( data = data, modules = modules( tm_a_regression( label = "Regression", response = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = "BMRKR1", selected = "BMRKR1", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]], c("AGE", "SEX", "RACE")), selected = "AGE", multiple = TRUE, fixed = FALSE ) ), ggplot2_args = ggplot2_args( labs = list(subtitle = "Plot generated by Regression Module") ), decorators = list(footnote_regression) ) ) ) shinyApp(app$ui, app$server) ``` </details> --------- Signed-off-by: Marcin <[email protected]> Signed-off-by: André Veríssimo <[email protected]> Co-authored-by: 27856297+dependabot-preview[bot]@users.noreply.github.com <27856297+dependabot-preview[bot]@users.noreply.github.com> Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Marcin <[email protected]> Co-authored-by: Konrad Pagacz <[email protected]> Co-authored-by: m7pr <[email protected]> Co-authored-by: Pawel Rucki <[email protected]> Co-authored-by: André Veríssimo <[email protected]> Co-authored-by: Lluís Revilla <[email protected]>
Partner to insightsengineering/teal#1357 Introduces decorators to modules. More about decorators in here insightsengineering/teal#1384 <details><summary>Example with 1 tab per module</summary> ```r pkgload::load_all("../teal") pkgload::load_all(".") # ###################################################### # # _____ _ # | __ \ | | # | | | | ___ ___ ___ _ __ __ _| |_ ___ _ __ ___ # | | | |/ _ \/ __/ _ \| '__/ _` | __/ _ \| '__/ __| # | |__| | __/ (_| (_) | | | (_| | || (_) | | \__ \ # |_____/ \___|\___\___/|_| \__,_|\__\___/|_| |___/ # # # # Decorators # ##################################################### plot_grob_decorator <- function(default_footnote = "I am a good decorator", .var_to_replace = "plot") { teal_transform_module( label = "Caption (grob)", ui = function(id) shiny::textInput(shiny::NS(id, "footnote"), "Footnote", value = default_footnote), server = function(id, data) { moduleServer(id, function(input, output, session) { logger::log_info("🟠 plot_grob with default: {default_footnote}!", namespace = "teal.modules.general") reactive({ req(data(), input$footnote) logger::log_info("changing the footnote {default_footnote}", namespace = "teal.modules.general") teal.code::eval_code(data(), substitute( { footnote_grob <- grid::textGrob(footnote, x = 0, hjust = 0, gp = grid::gpar(fontsize = 10, fontface = "italic", col = "gray50")) # Arrange the plot and footnote .var_to_replace <- gridExtra::arrangeGrob( .var_to_replace, footnote_grob, ncol = 1, heights = grid::unit.c(grid::unit(1, "npc") - grid::unit(1, "lines"), grid::unit(1, "lines")) ) }, env = list( footnote = input$footnote, .var_to_replace = as.name(.var_to_replace) ))) }) }) } ) } caption_decorator <- function(default_caption = "I am a good decorator", .var_to_replace = "plot") { teal_transform_module( label = "Caption", ui = function(id) shiny::textInput(shiny::NS(id, "footnote"), "Footnote", value = default_caption), server = make_teal_transform_server( substitute({ my_name <- .var_name .var_to_replace <- .var_to_replace + ggplot2::labs(caption = footnote) }, env = list(.var_to_replace = as.name(.var_to_replace), .var_name = .var_to_replace)) ) ) } table_decorator <- function(.color1 = "#f9f9f9", .color2 = "#f0f0f0", .var_to_replace = "table") { teal_transform_module( label = "Table color", ui = function(id) { selectInput( NS(id, "style"), "Table Style", choices = c("Default", "Color1", "Color2"), selected = "Default" ) }, server = function(id, data) { moduleServer(id, function(input, output, session) { logger::log_info("🔵 Table row color called to action!", namespace = "teal.modules.general") reactive({ req(data(), input$style) logger::log_info("changing the Table row color '{input$style}'", namespace = "teal.modules.general") teal.code::eval_code(data(), substitute({ .var_to_replace <- switch( style, "Color1" = DT::formatStyle( .var_to_replace, columns = attr(.var_to_replace$x, "colnames")[-1], target = "row", backgroundColor = .color1 ), "Color2" = DT::formatStyle( .var_to_replace, columns = attr(.var_to_replace$x, "colnames")[-1], target = "row", backgroundColor = .color2 ), .var_to_replace ) }, env = list( style = input$style, .var_to_replace = as.name(.var_to_replace), .color1 = .color1, .color2 = .color2 ))) }) }) } ) } head_decorator <- function(default_value = 6, .var_to_replace = "object") { teal_transform_module( label = "Head", ui = function(id) shiny::numericInput(shiny::NS(id, "n"), "Footnote", value = default_value), server = make_teal_transform_server( substitute({ .var_to_replace <- utils::head(.var_to_replace, n = n) }, env = list(.var_to_replace = as.name(.var_to_replace))) ) ) } treelis_subtitle_decorator <- function(default_caption = "I am a good decorator", .var_to_replace = "plot") { teal_transform_module( label = "Caption", ui = function(id) shiny::textInput(shiny::NS(id, "footnote"), "Footnote", value = default_caption), server = make_teal_transform_server( substitute({ .var_to_replace <- update(.var_to_replace, sub = footnote) }, env = list(.var_to_replace = as.name(.var_to_replace))) ) ) } insert_rrow_decorator <- function(default_caption = "I am a good new row", .var_to_replace = "table") { teal_transform_module( label = "New row", ui = function(id) shiny::textInput(shiny::NS(id, "new_row"), "New row", value = default_caption), server = make_teal_transform_server( substitute({ .var_to_replace <- rtables::insert_rrow(.var_to_replace, rtables::rrow(new_row)) }, env = list(.var_to_replace = as.name(.var_to_replace))) ) ) } do_nothing_decorator <- teal_transform_module(server = function(id, data) moduleServer(id, function(input, output, session) data)) # ########################################## # # _ _ _ _ # | | | | | | | | # | |_ ___ __ _| | __| | __ _| |_ __ _ # | __/ _ \/ _` | | / _` |/ _` | __/ _` | # | || __/ (_| | || (_| | (_| | || (_| | # \__\___|\__,_|_| \__,_|\__,_|\__\__,_| # ______ # |______| # # teal_data # ######################################### data <- teal_data(join_keys = default_cdisc_join_keys[c("ADSL", "ADRS")]) data <- within(data, { require(nestcolor) ADSL <- rADSL ADRS <- rADRS }) # For tm_outliers fact_vars_adsl <- names(Filter(isTRUE, sapply(data[["ADSL"]], is.factor))) vars <- choices_selected(variable_choices(data[["ADSL"]], fact_vars_adsl)) # For tm_g_distribution vars1 <- choices_selected( variable_choices(data[["ADSL"]], c("ARM", "COUNTRY", "SEX")), selected = NULL ) init( data = data, modules = modules( # ################################################### # # _ # (_) # _ __ ___ __ _ _ __ ___ ___ ___ _ ___ _ __ # | '__/ _ \/ _` | '__/ _ \/ __/ __| |/ _ \| '_ \ # | | | __/ (_| | | | __/\__ \__ \ | (_) | | | | # |_| \___|\__, |_| \___||___/___/_|\___/|_| |_| # __/ | # |___/ # # regression # ################################################## tm_a_regression( label = "Regression", response = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = "BMRKR1", selected = "BMRKR1", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]], c("AGE", "SEX", "RACE")), selected = "AGE", multiple = TRUE, fixed = FALSE ) ), decorators = list(caption_decorator("I am Regression", "plot")) ), # ######################################################### # # _ _ _ _ _ _ _ # | (_) | | (_) | | | (_) # __| |_ ___| |_ _ __ _| |__ _ _| |_ _ ___ _ __ # / _` | / __| __| '__| | '_ \| | | | __| |/ _ \| '_ \ # | (_| | \__ \ |_| | | | |_) | |_| | |_| | (_) | | | | # \__,_|_|___/\__|_| |_|_.__/ \__,_|\__|_|\___/|_| |_| # # # # distribution # ######################################################## tm_g_distribution( dist_var = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")), selected = "BMRKR1", multiple = FALSE, fixed = FALSE ) ), strata_var = data_extract_spec( dataname = "ADSL", filter = filter_spec( vars = vars1, multiple = TRUE ) ), group_var = data_extract_spec( dataname = "ADSL", filter = filter_spec( vars = vars1, multiple = TRUE ) ), decorators = list( histogram_plot = caption_decorator("I am density!", "histogram_plot"), qq_plot = caption_decorator("I am QQ!", "qq_plot"), summary_table = table_decorator("#FFA500", "#800080", "summary_table"), test_table = table_decorator("#2FA000", "#80FF80", "test_table") ) ), # #################### # # # # _ __ ___ __ _ # | '_ \ / __/ _` | # | |_) | (_| (_| | # | .__/ \___\__,_| # | | # |_| # # pca # ################### tm_a_pca( "PCA", dat = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data = data[["ADSL"]], c("BMRKR1", "AGE", "EOSDY")), selected = c("BMRKR1", "AGE") ) ), decorators = list( elbow_plot = caption_decorator("I am PCA / elbow", "elbow_plot"), circle_plot = caption_decorator("I am a PCA / circle", "circle_plot"), biplot = caption_decorator("I am a PCA / bipot", "biplot"), eigenvector_plot = caption_decorator("I am a PCA / eigenvector", "eigenvector_plot") ) ), ###################################### # # _ _ _ # | | | (_) # ___ _ _| |_| |_ ___ _ __ ___ # / _ \| | | | __| | |/ _ \ '__/ __| # | (_) | |_| | |_| | | __/ | \__ \ # \___/ \__,_|\__|_|_|\___|_| |___/ # # # # outliers # ##################################### tm_outliers( outlier_var = list( data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")), selected = "AGE", multiple = FALSE, fixed = FALSE ) ) ), categorical_var = list( data_extract_spec( dataname = "ADSL", filter = filter_spec( vars = vars, choices = value_choices(data[["ADSL"]], vars$selected), selected = value_choices(data[["ADSL"]], vars$selected), multiple = TRUE ) ) ), decorators = list( box_plot = caption_decorator("I am a good decorator", "box_plot"), density_plot = caption_decorator("I am a good decorator", "density_plot"), cumulative_plot = caption_decorator("I am a good decorator", "cumulative_plot"), table = table_decorator("#FFA500", "#800080") ) ), # ####################################################### # # _ _ _ # (_) | | (_) # __ _ ___ ___ ___ ___ _ __ _| |_ _ ___ _ __ # / _` / __/ __|/ _ \ / __| |/ _` | __| |/ _ \| '_ \ # | (_| \__ \__ \ (_) | (__| | (_| | |_| | (_) | | | | # \__,_|___/___/\___/ \___|_|\__,_|\__|_|\___/|_| |_| # # # # association # ###################################################### tm_g_association( ref = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices( data[["ADSL"]], c("SEX", "RACE", "COUNTRY", "ARM", "STRATA1", "STRATA2", "ITTFL", "BMRKR2") ), selected = "RACE" ) ), vars = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices( data[["ADSL"]], c("SEX", "RACE", "COUNTRY", "ARM", "STRATA1", "STRATA2", "ITTFL", "BMRKR2") ), selected = "BMRKR2", multiple = TRUE ) ), decorators = list(plot_grob_decorator("I am a good grob (association)")) ), # ################################################ # # _ _ _ _ _ # | | | | | | | | | | # __| | __ _| |_ __ _ | |_ __ _| |__ | | ___ # / _` |/ _` | __/ _` || __/ _` | '_ \| |/ _ \ # | (_| | (_| | || (_| || || (_| | |_) | | __/ # \__,_|\__,_|\__\__,_| \__\__,_|_.__/|_|\___| # ______ # |______| # # data_table # ############################################### tm_data_table( variables_selected = list( iris = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species") ), dt_args = list(caption = "IRIS Table Caption"), decorators = list(table_decorator()) ), # ######################################################## # # _ _ _ # | | | | | | # ___ _ __ ___ ___ ___ ______| |_ __ _| |__ | | ___ # / __| '__/ _ \/ __/ __|______| __/ _` | '_ \| |/ _ \ # | (__| | | (_) \__ \__ \ | || (_| | |_) | | __/ # \___|_| \___/|___/___/ \__\__,_|_.__/|_|\___| # # # # cross-table # ####################################################### tm_t_crosstable( label = "Cross Table", x = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], subset = function(data) { idx <- !vapply(data, inherits, logical(1), c("Date", "POSIXct", "POSIXlt")) return(names(data)[idx]) }), selected = "COUNTRY", multiple = TRUE, ordered = TRUE ) ), y = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], subset = function(data) { idx <- vapply(data, is.factor, logical(1)) return(names(data)[idx]) }), selected = "SEX" ) ), decorators = list(insert_rrow_decorator("I am a good new row")) ), # ####################################################################################### # # _ _ _ _ _ _ # | | | | | | | | | | (_) # ___ ___ __ _| |_| |_ ___ _ __ _ __ | | ___ | |_ _ __ ___ __ _| |_ _ __ ___ __ # / __|/ __/ _` | __| __/ _ \ '__| '_ \| |/ _ \| __| | '_ ` _ \ / _` | __| '__| \ \/ / # \__ \ (_| (_| | |_| || __/ | | |_) | | (_) | |_ | | | | | | (_| | |_| | | |> < # |___/\___\__,_|\__|\__\___|_| | .__/|_|\___/ \__| |_| |_| |_|\__,_|\__|_| |_/_/\_\ # | | # |_| # # scatterplot matrix # ###################################################################################### tm_g_scatterplotmatrix( label = "Scatterplot matrix", variables = list( data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]]), selected = c("AGE", "RACE", "SEX"), multiple = TRUE, ordered = TRUE ) ), data_extract_spec( dataname = "ADRS", filter = filter_spec( label = "Select endpoints:", vars = c("PARAMCD", "AVISIT"), choices = value_choices(data[["ADRS"]], c("PARAMCD", "AVISIT"), c("PARAM", "AVISIT")), selected = "INVET - END OF INDUCTION", multiple = TRUE ), select = select_spec( choices = variable_choices(data[["ADRS"]]), selected = c("AGE", "AVAL", "ADY"), multiple = TRUE, ordered = TRUE ) ) ), decorators = list(treelis_subtitle_decorator("I am a Scatterplot matrix", "plot")) ), # ############################################# # # # # _ __ ___ ___ _ __ ___ _ __ ___ ___ # | '__/ _ \/ __| '_ \ / _ \| '_ \/ __|/ _ \ # | | | __/\__ \ |_) | (_) | | | \__ \ __/ # |_| \___||___/ .__/ \___/|_| |_|___/\___| # | | # |_| # # response # ############################################ tm_g_response( label = "Response", response = data_extract_spec( dataname = "ADSL", select = select_spec(choices = variable_choices(data[["ADSL"]], c("BMRKR2", "COUNTRY"))) ), x = data_extract_spec( dataname = "ADSL", select = select_spec(choices = variable_choices(data[["ADSL"]], c("SEX", "RACE")), selected = "RACE") ), decorators = list(caption_decorator("I am a Response", "plot")) ), # ############################################ # # _ _ _ _ # | | (_) (_) | | # | |__ ___ ____ _ _ __ _ __ _| |_ ___ # | '_ \| \ \ / / _` | '__| |/ _` | __/ _ \ # | |_) | |\ V / (_| | | | | (_| | || __/ # |_.__/|_| \_/ \__,_|_| |_|\__,_|\__\___| # # # # bivariate # ########################################### tm_g_bivariate( x = data_extract_spec( dataname = "ADSL", select = select_spec(choices = variable_choices(data[["ADSL"]]), selected = "AGE") ), y = data_extract_spec( dataname = "ADSL", select = select_spec(choices = variable_choices(data[["ADSL"]]), selected = "SEX") ), row_facet = data_extract_spec( dataname = "ADSL", select = select_spec(choices = variable_choices(data[["ADSL"]]), selected = "ARM") ), col_facet = data_extract_spec( dataname = "ADSL", select = select_spec(choices = variable_choices(data[["ADSL"]]), selected = "COUNTRY") ), decorators = list(caption_decorator("I am a Bivariate", "plot")) ), ##################################################### # # _ _ _ _ # | | | | | | | | # ___ ___ __ _| |_| |_ ___ _ __ _ __ | | ___ | |_ # / __|/ __/ _` | __| __/ _ \ '__| '_ \| |/ _ \| __| # \__ \ (_| (_| | |_| || __/ | | |_) | | (_) | |_ # |___/\___\__,_|\__|\__\___|_| | .__/|_|\___/ \__| # | | # |_| # # scatterplot # #################################################### tm_g_scatterplot( label = "Scatterplot", x = data_extract_spec( dataname = "ADSL", select = select_spec(choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1", "BMRKR2"))) ), y = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1", "BMRKR2")), selected = "BMRKR1" ) ), color_by = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1", "BMRKR2", "RACE", "REGION1")), selected = NULL ) ), size_by = data_extract_spec( dataname = "ADSL", select = select_spec(choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1"))) ), row_facet = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("BMRKR2", "RACE", "REGION1")), selected = NULL ) ), col_facet = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("BMRKR2", "RACE", "REGION1")), selected = NULL ) ), decorators = list(caption_decorator("I am a scatterplot", "plot")) ), # ############################################################## # # _ _ _ _ # (_) (_) | | | | # _ __ ___ _ ___ ___ _ _ __ __ _ __| | __ _| |_ __ _ # | '_ ` _ \| / __/ __| | '_ \ / _` | / _` |/ _` | __/ _` | # | | | | | | \__ \__ \ | | | | (_| | | (_| | (_| | || (_| | # |_| |_| |_|_|___/___/_|_| |_|\__, | \__,_|\__,_|\__\__,_| # __/ |_____ # |___/______| # # missing_data # ############################################################# tm_missing_data( label = "Missing data", decorators = list( summary_plot = plot_grob_decorator("A", "summary_plot"), combination_plot = plot_grob_decorator("B", "combination_plot"), summary_table = table_decorator("table", .color1 = "#f0000055"), by_subject_plot = caption_decorator("by_subject_plot") ) ), example_module(decorators = list(head_decorator(6))) ) ) |> shiny::runApp() ``` --------- Signed-off-by: Marcin <[email protected]> Signed-off-by: André Veríssimo <[email protected]> Co-authored-by: go_gonzo <[email protected]> Co-authored-by: Konrad Pagacz <[email protected]> Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: 27856297+dependabot-preview[bot]@users.noreply.github.com <27856297+dependabot-preview[bot]@users.noreply.github.com> Co-authored-by: André Veríssimo <[email protected]>
- Partner to insightsengineering/teal#1357 - Introduces decorators to modules. More about decorators in here insightsengineering/teal#1384 - Part 1 of insightsengineering/teal#1371 (comment) ### Changes description - Adds internal wrapper around `srv_decorate_data` as utility to append code after decorator _(such as `print(plot)`)_ - Implements decorators in modules #### Checklist for final review: Double check check for every module: - Works with and without decorators - Has param and section in documentation - Code shows in "Show R code" - Reporter shows both the outputs and code #### Todo on feature branch - [x] Link the `teal_transform_module` parameter to an extended explanation as [suggested here](https://github.com/insightsengineering/teal.modules.clinical/pull/1252/files/a78c0baa0996fb30fdff551bccb7bab0ec86caa6#r1870909229) - [x] Meet with SME to validate some changes in template, topics: - modules with listing/dt - Merge all modules - [x] Part 1 of insightsengineering/teal#1371 (comment) - [x] Part 2 of insightsengineering/teal#1371 (comment) - [x] Accept changes to snapshots in regression testing #1304 #### Example apps Not all modules could be used in same App as the examples' data are not 100% compatible. Hence the 2 apps below. <details> <summary>Example app</summary> ```r # Load packages pkgload::load_all("../teal.modules.clinical", export_all = FALSE) # Decorators ------------------------------------------------------------------ insert_rrow_decorator <- function(default_caption = "I am a good new row", .var_to_replace = "table") { teal_transform_module( label = "New rtables row", ui = function(id) shiny::textInput(shiny::NS(id, "new_row"), "New row", value = default_caption), server = make_teal_transform_server( substitute({ .var_to_replace <- rtables::insert_rrow(.var_to_replace, rtables::rrow(new_row)) }, env = list(.var_to_replace = as.name(.var_to_replace))) ) ) } add_title_decorator <- function(default_check = TRUE, .var_to_replace = "plot") { teal_transform_module( label = "Title", ui = function(id) shiny::checkboxInput(NS(id, "flag"), "Add title?", TRUE), server = make_teal_transform_server( substitute({ if (flag) .var_to_replace <- .var_to_replace + ggplot2::ggtitle("Title added by decorator") }, env = list(.var_to_replace = as.name(.var_to_replace)) ) ) ) } caption_decorator <- function(default_caption = "I am a good decorator", .var_to_replace = "plot") { teal_transform_module( label = "Caption", ui = function(id) shiny::textInput(shiny::NS(id, "footnote"), "Footnote", value = default_caption), server = make_teal_transform_server( substitute({ .var_to_replace <- .var_to_replace + ggplot2::labs(caption = footnote) }, env = list(.var_to_replace = as.name(.var_to_replace))) ) ) } change_theme_decorator <- function(default_check = TRUE, .var_to_replace = "plot") { teal_transform_module( label = "Theme", ui = function(id) shiny::checkboxInput(NS(id, "flag"), "Apply dark theme?", TRUE), server = make_teal_transform_server( substitute({ if (flag) .var_to_replace <- .var_to_replace + ggplot2::theme_dark() }, env = list(.var_to_replace = as.name(.var_to_replace)) ) ) ) } add_cowplot_title_decorator <- function(default_check = TRUE, .var_to_replace = "plot") { teal_transform_module( label = "Cowplot title", ui = function(id) shiny::checkboxInput(NS(id, "flag"), "Add title?", TRUE), server = make_teal_transform_server( substitute({ if (flag) .var_to_replace <- .var_to_replace + ggplot2::ggtitle("Title added by decorator") + cowplot::theme_cowplot() }, env = list(.var_to_replace = as.name(.var_to_replace)) ) ) ) } rlisting_footer <- function(default_footer = "I am a good footer", .var_to_replace = "table_listing") { teal_transform_module( label = "New row", ui = function(id) shiny::textInput(shiny::NS(id, "footer"), "footer", value = default_footer), server = make_teal_transform_server( substitute({ rlistings::main_footer(.var_to_replace) <- footer }, env = list(.var_to_replace = as.name(.var_to_replace))) ) ) } # End of decorators ----------------------------------------------------------- library(dplyr) # arm_ref_comp <- list(ARMCD = list(ref = "ARM B", comp = c("ARM A", "ARM C"))) arm_ref_comp <- list( ACTARMCD = list(ref = "ARM B", comp = c("ARM A", "ARM C")), ARM = list(ref = "B: Placebo", comp = c("A: Drug X", "C: Combination")) ) data <- within(teal_data(), { ADSL <- tmc_ex_adsl |> mutate(ITTFL = factor("Y") |> with_label("Intent-To-Treat Population Flag")) |> mutate(DTHFL = case_when(!is.na(DTHDT) ~ "Y", TRUE ~ "") |> with_label("Subject Death Flag")) ADAE <- tmc_ex_adae |> filter(!((AETOXGR == 1) & (AESEV == "MILD") & (ARM == "A: Drug X"))) ADAE$ASTDY <- structure( as.double(ADAE$ASTDY, unit = attr(ADAE$ASTDY, "units", exact = TRUE)), label = attr(ADAE$ASTDY, "label", exact = TRUE) ) .lbls_adae <- col_labels(tmc_ex_adae) ADAE <- tmc_ex_adae %>% mutate_if(is.character, as.factor) #' be certain of having factors col_labels(ADAE) <- .lbls_adae ADTTE <- tmc_ex_adtte ADLB <- tmc_ex_adlb |> mutate(AVISIT == forcats::fct_reorder(AVISIT, AVISITN, min)) |> mutate( ONTRTFL = case_when( AVISIT %in% c("SCREENING", "BASELINE") ~ "", TRUE ~ "Y" ) |> with_label("On Treatment Record Flag") ) ADVS <- tmc_ex_advs ADRS <- tmc_ex_adrs |> mutate( AVALC = d_onco_rsp_label(AVALC) |> with_label("Character Result/Finding") ) |> filter(PARAMCD != "OVRINV" | AVISIT == "FOLLOW UP") |> filter(PARAMCD %in% c("BESRSPI", "INVET")) ADAETTE <- tmc_ex_adaette %>% filter(PARAMCD %in% c("AETTE1", "AETTE2", "AETTE3")) %>% mutate(is_event = CNSR == 0) %>% mutate(n_events = as.integer(is_event)) .add_event_flags <- function(dat) { dat <- dat %>% mutate( TMPFL_SER = AESER == "Y", TMPFL_REL = AEREL == "Y", TMPFL_GR5 = AETOXGR == "5", TMP_SMQ01 = !is.na(SMQ01NAM), TMP_SMQ02 = !is.na(SMQ02NAM), TMP_CQ01 = !is.na(CQ01NAM) ) column_labels <- list( TMPFL_SER = "Serious AE", TMPFL_REL = "Related AE", TMPFL_GR5 = "Grade 5 AE", TMP_SMQ01 = aesi_label(dat[["SMQ01NAM"]], dat[["SMQ01SC"]]), TMP_SMQ02 = aesi_label("Y.9.9.9.9/Z.9.9.9.9 AESI"), TMP_CQ01 = aesi_label(dat[["CQ01NAM"]]) ) col_labels(dat)[names(column_labels)] <- as.character(column_labels) dat } ADEX <- tmc_ex_adex set.seed(1, kind = "Mersenne-Twister") .labels <- col_labels(ADEX, fill = FALSE) ADEX <- ADEX %>% distinct(USUBJID, .keep_all = TRUE) %>% mutate( PARAMCD = "TDURD", PARAM = "Overall duration (days)", AVAL = sample(x = seq(1, 200), size = n(), replace = TRUE), AVALU = "Days" ) %>% bind_rows(ADEX) col_labels(ADEX) <- .labels ADCM <- tmc_ex_adcm ADMH <- tmc_ex_admh ADCM$CMASTDTM <- ADCM$ASTDTM ADCM$CMAENDTM <- ADCM$AENDTM ADEG <- tmc_ex_adeg # smq .names_baskets <- grep("^(SMQ|CQ).*NAM$", names(ADAE), value = TRUE) .names_scopes <- grep("^SMQ.*SC$", names(ADAE), value = TRUE) .cs_baskets <- choices_selected( choices = variable_choices(ADAE, subset = .names_baskets), selected = .names_baskets ) .cs_scopes <- choices_selected( choices = variable_choices(ADAE, subset = .names_scopes), selected = .names_scopes, fixed = TRUE ) # summary ADSL$EOSDY[1] <- NA_integer_ }) join_keys(data) <- default_cdisc_join_keys[names(data)] adcm_keys <- c("STUDYID", "USUBJID", "ASTDTM", "CMSEQ", "ATC1", "ATC2", "ATC3", "ATC4") join_keys(data)["ADCM", "ADCM"] <- adcm_keys # Use in choices selected ----------------------------------------------------- ADSL <- data[["ADSL"]] ADQS <- data[["ADQS"]] ADAE <- data[["ADAE"]] ADTTE <- data[["ADTTE"]] ADLB <- data[["ADLB"]] ADAE <- data[["ADAE"]] ADVS <- data[["ADVS"]] ADRS <- data[["ADRS"]] ADAETTE <- data[["ADAETTE"]] ADEX <- data[["ADEX"]] ADCM <- data[["ADCM"]] ADMH <- data[["ADMH"]] ADEG <- data[["ADEG"]] # Init ------------------------------------------------------------------------ init( data = data, modules = modules( # ------------------------------------------------------------------------- tm_t_summary_by( label = "Summary by Row Groups Table", dataname = "ADLB", arm_var = choices_selected( choices = variable_choices(ADSL, c("ARM", "ARMCD")), selected = "ARM" ), add_total = TRUE, by_vars = choices_selected( choices = variable_choices(ADLB, c("PARAM", "AVISIT")), selected = c("AVISIT") ), summarize_vars = choices_selected( choices = variable_choices(ADLB, c("AVAL", "CHG")), selected = c("AVAL") ), useNA = "ifany", paramcd = choices_selected( choices = value_choices(ADLB, "PARAMCD", "PARAM"), selected = "ALT" ), decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_smq( label = "Adverse Events by SMQ Table", dataname = "ADAE", arm_var = choices_selected( choices = variable_choices(data[["ADSL"]], subset = c("ARM", "SEX")), selected = "ARM" ), add_total = FALSE, baskets = data[[".cs_baskets"]], scopes = data[[".cs_scopes"]], llt = choices_selected( choices = variable_choices(data[["ADAE"]], subset = c("AEDECOD")), selected = "AEDECOD" ), decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_shift_by_grade( label = "Grade Laboratory Abnormality Table", dataname = "ADLB", arm_var = choices_selected( choices = variable_choices(ADSL, subset = c("ARM", "ARMCD")), selected = "ARM" ), paramcd = choices_selected( choices = value_choices(ADLB, "PARAMCD", "PARAM"), selected = "ALT" ), worst_flag_var = choices_selected( choices = variable_choices(ADLB, subset = c("WGRLOVFL", "WGRLOFL", "WGRHIVFL", "WGRHIFL")), selected = c("WGRLOVFL") ), worst_flag_indicator = choices_selected( value_choices(ADLB, "WGRLOVFL"), selected = "Y", fixed = TRUE ), anl_toxgrade_var = choices_selected( choices = variable_choices(ADLB, subset = c("ATOXGR")), selected = c("ATOXGR"), fixed = TRUE ), base_toxgrade_var = choices_selected( choices = variable_choices(ADLB, subset = c("BTOXGR")), selected = c("BTOXGR"), fixed = TRUE ), add_total = FALSE, decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_shift_by_arm( label = "Shift by Arm Table", dataname = "ADEG", arm_var = choices_selected( variable_choices(ADSL, subset = c("ARM", "ARMCD")), selected = "ARM" ), paramcd = choices_selected( value_choices(ADEG, "PARAMCD"), selected = "HR" ), visit_var = choices_selected( value_choices(ADEG, "AVISIT"), selected = "POST-BASELINE MINIMUM" ), aval_var = choices_selected( variable_choices(ADEG, subset = "ANRIND"), selected = "ANRIND", fixed = TRUE ), baseline_var = choices_selected( variable_choices(ADEG, subset = "BNRIND"), selected = "BNRIND", fixed = TRUE ), useNA = "ifany", decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_shift_by_arm_by_worst( label = "Shift by Arm Table (by worst)", dataname = "ADEG", arm_var = choices_selected( variable_choices(ADSL, subset = c("ARM", "ARMCD")), selected = "ARM" ), paramcd = choices_selected( value_choices(ADEG, "PARAMCD"), selected = "ECGINTP" ), worst_flag_var = choices_selected( variable_choices(ADEG, c("WORS02FL", "WORS01FL")), selected = "WORS02FL" ), worst_flag = choices_selected( value_choices(ADEG, "WORS02FL"), selected = "Y", fixed = TRUE ), aval_var = choices_selected( variable_choices(ADEG, c("AVALC", "ANRIND")), selected = "AVALC" ), baseline_var = choices_selected( variable_choices(ADEG, c("BASEC", "BNRIND")), selected = "BASEC" ), useNA = "ifany", decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_pp_prior_medication( label = "Prior Medication", dataname = "ADCM", parentname = "ADSL", patient_col = "USUBJID", atirel = choices_selected( choices = variable_choices(ADCM, "ATIREL"), selected = "ATIREL" ), cmdecod = choices_selected( choices = variable_choices(ADCM, "CMDECOD"), selected = "CMDECOD" ), cmindc = choices_selected( choices = variable_choices(ADCM, "CMINDC"), selected = "CMINDC" ), cmstdy = choices_selected( choices = variable_choices(ADCM, "ASTDY"), selected = "ASTDY" ), decorators = list( table = rlisting_footer(.var_to_replace = "table") ) ), # ------------------------------------------------------------------------- tm_t_pp_medical_history( label = "Medical History", dataname = "ADMH", parentname = "ADSL", patient_col = "USUBJID", mhterm = choices_selected( choices = variable_choices(ADMH, c("MHTERM")), selected = "MHTERM" ), mhbodsys = choices_selected( choices = variable_choices(ADMH, "MHBODSYS"), selected = "MHBODSYS" ), mhdistat = choices_selected( choices = variable_choices(ADMH, "MHDISTAT"), selected = "MHDISTAT" ), decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_pp_laboratory( label = "Vitals", dataname = "ADLB", patient_col = "USUBJID", paramcd = choices_selected( choices = variable_choices(ADLB, "PARAMCD"), selected = "PARAMCD" ), param = choices_selected( choices = variable_choices(ADLB, "PARAM"), selected = "PARAM" ), timepoints = choices_selected( choices = variable_choices(ADLB, "ADY"), selected = "ADY" ), anrind = choices_selected( choices = variable_choices(ADLB, "ANRIND"), selected = "ANRIND" ), aval_var = choices_selected( choices = variable_choices(ADLB, "AVAL"), selected = "AVAL" ), avalu_var = choices_selected( choices = variable_choices(ADLB, "AVALU"), selected = "AVALU" ), decorators = list(table = rlisting_footer(.var_to_replace = "table")) ), # ------------------------------------------------------------------------- tm_t_pp_basic_info( label = "Basic Info", dataname = "ADSL", patient_col = "USUBJID", vars = choices_selected(choices = variable_choices(ADSL), selected = c("ARM", "AGE", "SEX", "COUNTRY", "RACE", "EOSSTT")) , decorators = list( table = rlisting_footer(.var_to_replace = "table") ) ), # ------------------------------------------------------------------------- tm_t_mult_events( label = "Concomitant Medications by Medication Class and Preferred Name", dataname = "ADCM", arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"), seq_var = choices_selected("CMSEQ", selected = "CMSEQ", fixed = TRUE), hlt = choices_selected( choices = variable_choices(ADCM, c("ATC1", "ATC2", "ATC3", "ATC4")), selected = c("ATC1", "ATC2", "ATC3", "ATC4") ), llt = choices_selected(choices = variable_choices(ADCM, c("CMDECOD")), selected = c("CMDECOD")), add_total = TRUE, event_type = "treatment", decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_logistic( label = "Logistic Regression", dataname = "ADRS", arm_var = choices_selected( choices = variable_choices(ADRS, c("ARM", "ARMCD")), selected = "ARM" ), arm_ref_comp = arm_ref_comp, paramcd = choices_selected( choices = value_choices(ADRS, "PARAMCD", "PARAM"), selected = "BESRSPI" ), cov_var = choices_selected( choices = c("SEX", "AGE", "BMRKR1", "BMRKR2"), selected = "SEX" ), decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_exposure( label = "Duration of Exposure Table", dataname = "ADEX", paramcd = choices_selected( choices = value_choices(data[["ADEX"]], "PARAMCD", "PARAM"), selected = "TDURD" ), col_by_var = choices_selected( choices = variable_choices(data[["ADEX"]], subset = c("SEX", "ARM")), selected = "SEX" ), row_by_var = choices_selected( choices = variable_choices(data[["ADEX"]], subset = c("RACE", "REGION1", "STRATA1", "SEX")), selected = "RACE" ), parcat = choices_selected( choices = value_choices(data[["ADEX"]], "PARCAT2"), selected = "Drug A" ), add_total = FALSE, decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_events( label = "Adverse Event Table", dataname = "ADAE", arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"), llt = choices_selected( choices = variable_choices(ADAE, c("AETERM", "AEDECOD")), selected = c("AEDECOD") ), hlt = choices_selected( choices = variable_choices(ADAE, c("AEBODSYS", "AESOC")), selected = "AEBODSYS" ), add_total = TRUE, event_type = "adverse event", decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_events_patyear( label = "AE Rate Adjusted for Patient-Years At Risk Table", dataname = "ADAETTE", arm_var = choices_selected( choices = variable_choices(ADSL, c("ARM", "ARMCD")), selected = "ARMCD" ), add_total = TRUE, events_var = choices_selected( choices = variable_choices(ADAETTE, "n_events"), selected = "n_events", fixed = TRUE ), paramcd = choices_selected( choices = value_choices(ADAETTE, "PARAMCD", "PARAM"), selected = "AETTE1" ), decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_events_by_grade( label = "Adverse Events by Grade Table", dataname = "ADAE", arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"), llt = choices_selected( choices = variable_choices(ADAE, c("AETERM", "AEDECOD")), selected = c("AEDECOD") ), hlt = choices_selected( choices = variable_choices(ADAE, c("AEBODSYS", "AESOC")), selected = "AEBODSYS" ), grade = choices_selected( choices = variable_choices(ADAE, c("AETOXGR", "AESEV")), selected = "AETOXGR" ), decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_coxreg( label = "Cox Reg.", dataname = "ADTTE", arm_var = choices_selected(c("ARM", "ARMCD", "ACTARMCD"), "ARM"), arm_ref_comp = arm_ref_comp, paramcd = choices_selected( value_choices(ADTTE, "PARAMCD", "PARAM"), "OS" ), strata_var = choices_selected( c("COUNTRY", "STRATA1", "STRATA2"), "STRATA1" ), cov_var = choices_selected( c("AGE", "BMRKR1", "BMRKR2", "REGION1"), "AGE" ), multivariate = TRUE, decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_abnormality( label = "Abnormality Table", dataname = "ADLB", arm_var = choices_selected( choices = variable_choices(ADSL, subset = c("ARM", "ARMCD")), selected = "ARM" ), add_total = FALSE, by_vars = choices_selected( choices = variable_choices(ADLB, subset = c("LBCAT", "PARAM", "AVISIT")), selected = c("LBCAT", "PARAM"), keep_order = TRUE ), baseline_var = choices_selected( variable_choices(ADLB, subset = "BNRIND"), selected = "BNRIND", fixed = TRUE ), grade = choices_selected( choices = variable_choices(ADLB, subset = "ANRIND"), selected = "ANRIND", fixed = TRUE ), abnormal = list(low = "LOW", high = "HIGH"), exclude_base_abn = FALSE, decorators = list(insert_rrow_decorator("I am a good new row")) ), # ------------------------------------------------------------------------- tm_g_pp_vitals( label = "Vitals", dataname = "ADVS", parentname = "ADSL", patient_col = "USUBJID", plot_height = c(600L, 200L, 2000L), paramcd = choices_selected( choices = variable_choices(ADVS, "PARAMCD"), selected = "PARAMCD" ), xaxis = choices_selected( choices = variable_choices(ADVS, "ADY"), selected = "ADY" ), aval_var = choices_selected( choices = variable_choices(ADVS, "AVAL"), selected = "AVAL" ), decorators = list(plot = add_title_decorator("plot")) ), # ------------------------------------------------------------------------- tm_g_pp_adverse_events( label = "Adverse Events", dataname = "ADAE", parentname = "ADSL", patient_col = "USUBJID", plot_height = c(600L, 200L, 2000L), aeterm = choices_selected( choices = variable_choices(ADAE, "AETERM"), selected = "AETERM" ), tox_grade = choices_selected( choices = variable_choices(ADAE, "AETOXGR"), selected = "AETOXGR" ), causality = choices_selected( choices = variable_choices(ADAE, "AEREL"), selected = "AEREL" ), outcome = choices_selected( choices = variable_choices(ADAE, "AEOUT"), selected = "AEOUT" ), action = choices_selected( choices = variable_choices(ADAE, "AEACN"), selected = "AEACN" ), time = choices_selected( choices = variable_choices(ADAE, "ASTDY"), selected = "ASTDY" ), decod = NULL, decorators = list( plot = caption_decorator('I am a good caption', 'plot'), table = rlisting_footer(.var_to_replace = 'table') ) ), # ------------------------------------------------------------------------- tm_g_lineplot( label = "Line Plot", dataname = "ADLB", strata = choices_selected( variable_choices(ADSL, c("ARM", "ARMCD", "ACTARMCD")), "ARM" ), y = choices_selected( variable_choices(ADLB, c("AVAL", "BASE", "CHG", "PCHG")), "AVAL" ), param = choices_selected( value_choices(ADLB, "PARAMCD", "PARAM"), "ALT" ), decorators = list(add_cowplot_title_decorator("plot")) ), # ------------------------------------------------------------------------- tm_g_km( label = "Kaplan-Meier Plot", dataname = "ADTTE", arm_var = choices_selected( variable_choices(ADSL, c("ARM", "ARMCD", "ACTARMCD")), "ARM" ), paramcd = choices_selected( value_choices(ADTTE, "PARAMCD", "PARAM"), "OS" ), arm_ref_comp = arm_ref_comp, strata_var = choices_selected( variable_choices(ADSL, c("SEX", "BMRKR2")), "SEX" ), facet_var = choices_selected( variable_choices(ADSL, c("SEX", "BMRKR2")), NULL ), decorators = list(plot = add_cowplot_title_decorator(TRUE, "plot")) ), # ------------------------------------------------------------------------- tm_g_barchart_simple( label = "ADAE Analysis", x = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices( ADSL, c( "ARM", "ACTARM", "SEX", "RACE", "ITTFL", "SAFFL", "STRATA2" ) ), selected = "ACTARM", multiple = FALSE ) ), fill = list( data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices( ADSL, c( "ARM", "ACTARM", "SEX", "RACE", "ITTFL", "SAFFL", "STRATA2" ) ), selected = "SEX", multiple = FALSE ) ), data_extract_spec( dataname = "ADAE", select = select_spec( choices = variable_choices(ADAE, c("AETOXGR", "AESEV", "AESER")), selected = NULL, multiple = FALSE ) ) ), x_facet = list( data_extract_spec( dataname = "ADAE", select = select_spec( choices = variable_choices(ADAE, c("AETOXGR", "AESEV", "AESER")), selected = "AETOXGR", multiple = FALSE ) ), data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices( ADSL, c( "ARM", "ACTARM", "SEX", "RACE", "ITTFL", "SAFFL", "STRATA2" ) ), selected = NULL, multiple = FALSE ) ) ), y_facet = list( data_extract_spec( dataname = "ADAE", select = select_spec( choices = variable_choices(ADAE, c("AETOXGR", "AESEV", "AESER")), selected = "AESEV", multiple = FALSE ) ), data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices( ADSL, c( "ARM", "ACTARM", "SEX", "RACE", "ITTFL", "SAFFL", "STRATA2" ) ), selected = NULL, multiple = FALSE ) ) ), decorators = list(plot = caption_decorator('The best', 'plot')) ) ) ) |> shiny::runApp() ``` </details> <details> <summary>Second App</summary> ```r # Load packages pkgload::load_all("../teal.modules.clinical", export_all = FALSE) # Example below insert_rrow_decorator <- function(default_caption = "I am a good new row", .var_to_replace = "table") { teal_transform_module( label = "New row", ui = function(id) shiny::textInput(shiny::NS(id, "new_row"), "New row", value = default_caption), server = make_teal_transform_server( substitute({ .var_to_replace <- rtables::insert_rrow(.var_to_replace, rtables::rrow(new_row)) }, env = list(.var_to_replace = as.name(.var_to_replace))) ) ) } # Preparation of the test case - use `EOSDY` and `DCSREAS` variables to demonstrate missing data. data <- teal_data() data <- within(data, { ADSL <- tmc_ex_adsl |> mutate( DTHFL = case_when( !is.na(DTHDT) ~ "Y", TRUE ~ "" ) %>% with_label("Subject Death Flag") ) ADSL$EOSDY[1] <- NA_integer_ ADAE <- tmc_ex_adae .add_event_flags <- function(dat) { dat <- dat %>% mutate( TMPFL_SER = AESER == "Y", TMPFL_REL = AEREL == "Y", TMPFL_GR5 = AETOXGR == "5", TMP_SMQ01 = !is.na(SMQ01NAM), TMP_SMQ02 = !is.na(SMQ02NAM), TMP_CQ01 = !is.na(CQ01NAM) ) column_labels <- list( TMPFL_SER = "Serious AE", TMPFL_REL = "Related AE", TMPFL_GR5 = "Grade 5 AE", TMP_SMQ01 = aesi_label(dat[["SMQ01NAM"]], dat[["SMQ01SC"]]), TMP_SMQ02 = aesi_label("Y.9.9.9.9/Z.9.9.9.9 AESI"), TMP_CQ01 = aesi_label(dat[["CQ01NAM"]]) ) col_labels(dat)[names(column_labels)] <- as.character(column_labels) dat } #' Generating user-defined event flags. ADAE <- ADAE %>% .add_event_flags() .ae_anl_vars <- names(ADAE)[startsWith(names(ADAE), "TMPFL_")] .aesi_vars <- names(ADAE)[startsWith(names(ADAE), "TMP_")] ADTTE <- tmc_ex_adtte # responder ADRS <- tmc_ex_adrs %>% mutate( AVALC = d_onco_rsp_label(AVALC) %>% with_label("Character Result/Finding") ) %>% filter(PARAMCD != "OVRINV" | AVISIT == "FOLLOW UP") ADQS <- tmc_ex_adqs %>% filter(ABLFL != "Y" & ABLFL2 != "Y") %>% filter(AVISIT %in% c("WEEK 1 DAY 8", "WEEK 2 DAY 15", "WEEK 3 DAY 22")) %>% mutate( AVISIT = as.factor(AVISIT), AVISITN = rank(AVISITN) %>% as.factor() %>% as.numeric() %>% as.factor() #' making consecutive numeric factor ) }) join_keys(data) <- default_cdisc_join_keys[names(data)] ADSL <- data[["ADSL"]] ADRS <- data[["ADRS"]] app <- init( data = data, modules = modules( # ------------------------------------------------------------------------- tm_a_mmrm( label = "MMRM", dataname = "ADQS", aval_var = choices_selected(c("AVAL", "CHG"), "AVAL"), id_var = choices_selected(c("USUBJID", "SUBJID"), "USUBJID"), arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"), visit_var = choices_selected(c("AVISIT", "AVISITN"), "AVISIT"), arm_ref_comp = arm_ref_comp, paramcd = choices_selected( choices = value_choices(data[["ADQS"]], "PARAMCD", "PARAM"), selected = "FKSI-FWB" ), cov_var = choices_selected(c("BASE", "AGE", "SEX", "BASE:AVISIT"), NULL) , decorators = list( lsmeans_table = insert_rrow_decorator("A", .var_to_replace = "lsmeans_table") , lsmeans_plot = add_title_decorator("B", .var_to_replace = "lsmeans_plot") , covariance_table = insert_rrow_decorator("C", .var_to_replace = "covariance_table") , fixed_effects_table = insert_rrow_decorator("D", .var_to_replace = "fixed_effects_table") , diagnostic_table = insert_rrow_decorator(.var_to_replace = "diagnostic_table") , diagnostic_plot = add_title_decorator(.var_to_replace = "diagnostic_plot") ) ), # ------------------------------------------------------------------------- tm_t_binary_outcome( label = "Responders", dataname = "ADRS", paramcd = choices_selected( choices = value_choices(ADRS, "PARAMCD", "PARAM"), selected = "BESRSPI" ), arm_var = choices_selected( choices = variable_choices(ADRS, c("ARM", "ARMCD", "ACTARMCD")), selected = "ARM" ), arm_ref_comp = arm_ref_comp, strata_var = choices_selected( choices = variable_choices(ADRS, c("SEX", "BMRKR2", "RACE")), selected = "RACE" ), default_responses = list( BESRSPI = list( rsp = c("Complete Response (CR)", "Partial Response (PR)"), levels = c( "Complete Response (CR)", "Partial Response (PR)", "Stable Disease (SD)", "Progressive Disease (PD)" ) ), INVET = list( rsp = c("Stable Disease (SD)", "Not Evaluable (NE)"), levels = c( "Complete Response (CR)", "Not Evaluable (NE)", "Partial Response (PR)", "Progressive Disease (PD)", "Stable Disease (SD)" ) ), OVRINV = list( rsp = c("Progressive Disease (PD)", "Stable Disease (SD)"), levels = c("Progressive Disease (PD)", "Stable Disease (SD)", "Not Evaluable (NE)") ) ), decorators = list(insert_rrow_decorator("I am a new row")) ), # ------------------------------------------------------------------------- tm_t_events_summary( label = "Adverse Events Summary", dataname = "ADAE", arm_var = choices_selected( choices = variable_choices("ADSL", c("ARM", "ARMCD")), selected = "ARM" ), flag_var_anl = choices_selected( choices = variable_choices("ADAE", data[[".ae_anl_vars"]]), selected = data[[".ae_anl_vars"]][1], keep_order = TRUE, fixed = FALSE ), flag_var_aesi = choices_selected( choices = variable_choices("ADAE", data[[".aesi_vars"]]), selected = data[[".aesi_vars"]][1], keep_order = TRUE, fixed = FALSE ), add_total = TRUE, decorators = list(insert_rrow_decorator()) ), # ------------------------------------------------------------------------- tm_t_summary( label = "Demographic Table", dataname = "ADSL", arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"), add_total = TRUE, summarize_vars = choices_selected( c("SEX", "RACE", "BMRKR2", "EOSDY", "DCSREAS", "AGE"), c("SEX", "RACE") ), useNA = "ifany", decorators = list(insert_rrow_decorator()) ) ) ) |> shiny::runApp() ``` </details> --------- Signed-off-by: Marcin <[email protected]> Signed-off-by: Lluís Revilla <[email protected]> Signed-off-by: André Veríssimo <[email protected]> Co-authored-by: 27856297+dependabot-preview[bot]@users.noreply.github.com <27856297+dependabot-preview[bot]@users.noreply.github.com> Co-authored-by: Marcin <[email protected]> Co-authored-by: m7pr <[email protected]> Co-authored-by: Lluís Revilla <[email protected]> Co-authored-by: Lluís Revilla <[email protected]> Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com>
We need to find an optimal way to allow app developer to "decorate" output of the module (including interactivity). In tmc modules are developed as follows.
p
binding (it is defined in the template)p
variable is extracted from qenv and passed toplot_with_settings
We need to find a nice way to include any arbitrary code to change the
p
. No holds barred!Issue should be addressed by POC
Definition of Done
The text was updated successfully, but these errors were encountered: