Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enable aten::smooth_l1_loss forward/backward #621

Merged
merged 5 commits into from
Jul 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 58 additions & 0 deletions src/ATen/native/xpu/Loss.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,64 @@ Tensor& XPUNativeFunctions::mse_loss_backward_out(
return grad_input;
}


Tensor& XPUNativeFunctions::smooth_l1_loss_out(
const Tensor& input,
const Tensor& target,
int64_t reduction,
double beta,
Tensor& result) {
if (reduction != Reduction::None) {
TORCH_INTERNAL_ASSERT(
reduction == Reduction::Mean || reduction == Reduction::Sum);
result.resize_({});
Tensor loss;
auto iter = TensorIterator::borrowing_binary_op(loss, input, target);
native::xpu::smooth_l1_kernel(iter, beta);
if (reduction == Reduction::Mean) {
at::mean_out(const_cast<Tensor&>(result), iter.output(), IntArrayRef{});
} else {
at::sum_out(const_cast<Tensor&>(result), iter.output(), IntArrayRef{});
}
} else {
auto iter = TensorIterator::borrowing_binary_op(result, input, target);
native::xpu::smooth_l1_kernel(iter, beta);
}
return result;
}

Tensor XPUNativeFunctions::smooth_l1_loss(
const Tensor& input,
const Tensor& target,
int64_t reduction,
double beta) {
Tensor result = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
result = XPUNativeFunctions::smooth_l1_loss_out(
input, target, reduction, beta, result);
return result;
}

Tensor& XPUNativeFunctions::smooth_l1_loss_backward_out(
const Tensor& grad_output,
const Tensor& input,
const Tensor& target,
int64_t reduction,
double beta,
Tensor& grad_input) {
auto norm = reduction == Reduction::Mean ? 1. / input.numel() : 1.;
auto iter = at::TensorIteratorConfig()
.add_output(grad_input)
.add_const_input(input)
.add_const_input(target)
.add_const_input(grad_output)
.promote_inputs_to_common_dtype(true)
.cast_common_dtype_to_outputs(true)
.enforce_safe_casting_to_output(true)
.build();
native::xpu::smooth_l1_backward_kernel(iter, norm, beta);
return grad_input;
}

Tensor XPUNativeFunctions::binary_cross_entropy(
const Tensor& self,
const Tensor& target,
Expand Down
2 changes: 0 additions & 2 deletions src/ATen/native/xpu/XPUFallback.template
Original file line number Diff line number Diff line change
Expand Up @@ -266,8 +266,6 @@ TORCH_LIBRARY_IMPL(aten, XPU, m) {
"signbit.out",
"sign.out",
"sinc.out",
"smooth_l1_loss_backward.grad_input",
"smooth_l1_loss.out",
"special_airy_ai.out",
"special_bessel_j0.out",
"special_bessel_j1.out",
Expand Down
26 changes: 26 additions & 0 deletions src/ATen/native/xpu/sycl/BinaryMiscOpsKernels.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,32 @@ void mse_kernel(TensorIteratorBase& iter) {
[&]() { gpu_kernel(iter, MSEFunctor<scalar_t>()); });
}

template <typename scalar_t>
struct SmoothL1Functor {
scalar_t operator()(scalar_t input, scalar_t target) const {
auto z = std::abs(input - target);
return z < beta_val ? scalar_t(0.5) * z * z / beta_val
: z - scalar_t(0.5) * beta_val;
}
SmoothL1Functor(scalar_t beta_val) : beta_val(beta_val) {}

private:
scalar_t beta_val;
};

void smooth_l1_kernel(TensorIteratorBase& iter, double beta) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
iter.dtype(),
"smooth_l1_xpu",
[&iter, beta]() {
scalar_t beta_val(beta);
SmoothL1Functor<scalar_t> f(beta_val);
gpu_kernel(iter, f);
});
}

template <typename scalar_t>
struct HuberFunctor {
scalar_t operator()(scalar_t a, scalar_t b) const {
Expand Down
2 changes: 2 additions & 0 deletions src/ATen/native/xpu/sycl/BinaryMiscOpsKernels.h
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@ namespace at::native::xpu {

void mse_kernel(TensorIteratorBase& iter);

void smooth_l1_kernel(TensorIteratorBase& iter, double beta);

void huber_kernel(TensorIterator& iter, double delta);

} // namespace at::native::xpu
34 changes: 34 additions & 0 deletions src/ATen/native/xpu/sycl/PointwiseOpsKernels.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -125,6 +125,40 @@ void mse_backward_kernel(TensorIterator& iter, const Scalar& value) {
});
}

template <typename scalar_t>
struct SmoothL1BackwardFunctor {
scalar_t operator()(scalar_t input, scalar_t target, scalar_t grad_output)
const {
const auto x = input - target;
if (x < -beta_val)
return -norm_val * grad_output;
else if (x > beta_val)
return norm_val * grad_output;
else
return norm_val * x * grad_output / beta_val;
}
SmoothL1BackwardFunctor(scalar_t norm_val, scalar_t beta_val)
: norm_val(norm_val), beta_val(beta_val) {}

private:
scalar_t norm_val;
scalar_t beta_val;
};

void smooth_l1_backward_kernel(TensorIterator& iter, Scalar norm, double beta) {
AT_DISPATCH_ALL_TYPES_AND2(
kHalf,
kBFloat16,
iter.dtype(),
"smooth_l1_backward_xpu",
[&iter, &norm, beta] {
auto norm_val = norm.to<scalar_t>();
scalar_t beta_val(beta);
SmoothL1BackwardFunctor<scalar_t> f(norm_val, beta_val);
gpu_kernel(iter, f);
});
}

template <typename scalar_t>
struct HuberBackwardFunctor {
scalar_t operator()(scalar_t input, scalar_t target, scalar_t grad_output)
Expand Down
2 changes: 2 additions & 0 deletions src/ATen/native/xpu/sycl/PointwiseOpsKernels.h
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@ void addcdiv_kernel(TensorIterator& iter, Scalar value);

void mse_backward_kernel(TensorIterator& iter, const Scalar& value);

void smooth_l1_backward_kernel(TensorIterator& iter, Scalar norm, double beta);

void huber_backward_kernel(
TensorIterator& iter,
const Scalar& norm,
Expand Down
1 change: 1 addition & 0 deletions test/xpu/xpu_test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,7 @@
"nn.functional.upsample_bilinear",
"nn.functional.upsample_nearest",
"nn.functional.nll_loss",
"nn.functional.smooth_l1_loss",
"nn.functional.mse_loss",
"nn.functional.binary_cross_entropy",
"nn.functional.huber_loss",
Expand Down
3 changes: 3 additions & 0 deletions yaml/xpu_functions.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -306,6 +306,9 @@ supported:
- bitwise_and.Tensor_out
- bitwise_or.Tensor_out
- bitwise_xor.Tensor_out
- smooth_l1_loss
- smooth_l1_loss.out
- smooth_l1_loss_backward.grad_input
- bitwise_not.out
- where.self_out
- where.self
Expand Down