This is the official implementation of our RODNet paper at WACV 2021.
Please cite our WACV 2021 paper if this repository is helpful for your research:
@inproceedings{wang2021rodnet,
author={Wang, Yizhou and Jiang, Zhongyu and Gao, Xiangyu and Hwang, Jenq-Neng and Xing, Guanbin and Liu, Hui},
title={RODNet: Radar Object Detection Using Cross-Modal Supervision},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month={January},
year={2021},
pages={504-513}
}
Create a conda environment for RODNet. Tested under Python 3.6, 3.7, 3.8.
conda create -n rodnet python=3.* -y
conda activate rodnet
Install pytorch.
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
Install cruw-devkit
package.
Please refer to cruw-devit
repository for detailed instructions.
git clone https://github.com/yizhou-wang/cruw-devkit.git
cd cruw-devkit
pip install -e .
cd ..
Setup RODNet package.
pip install -e .
python tools/prepare_dataset/prepare_data.py \
--config configs/<CONFIG_FILE> \
--data_root <DATASET_ROOT> \
--split train,test \
--out_data_dir data/<DATA_FOLDER_NAME>
python tools/train.py --config configs/<CONFIG_FILE> \
--data_dir data/<DATA_FOLDER_NAME> \
--log_dir checkpoints/
python tools/test.py --config configs/<CONFIG_FILE> \
--data_dir data/<DATA_FOLDER_NAME> \
--checkpoint <CHECKPOINT_PATH> \
--res_dir results/