-
Notifications
You must be signed in to change notification settings - Fork 655
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[LLVMGPU] Add fixes and tests for horizontally fused gemms through GP…
…U pipeline. Signed-off-by: MaheshRavishankar <[email protected]>
- Loading branch information
1 parent
50706f9
commit 4636e38
Showing
5 changed files
with
249 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
239 changes: 239 additions & 0 deletions
239
compiler/src/iree/compiler/Codegen/LLVMGPU/test/horizontal_fusion_pipeline.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,239 @@ | ||
// RUN: iree-opt --iree-gpu-test-target=gfx942 --pass-pipeline="builtin.module(iree-llvmgpu-select-lowering-strategy, func.func(iree-llvmgpu-lower-executable-target))" %s --split-input-file | FileCheck %s | ||
|
||
func.func @fused_contraction_1(%arg0: tensor<2x4096x640xf16>, | ||
%arg1 : tensor<10x64x640xf16>, %arg2 : tensor<10x64x640xf16>, | ||
%arg3 : tensor<10x64x640xf16>) | ||
-> (tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16>) { | ||
%11 = tensor.empty() : tensor<2x10x4096x64xf16> | ||
%12 = tensor.empty() : tensor<2x10x4096x64xf32> | ||
%cst = arith.constant 0.0: f32 | ||
%13 = linalg.fill ins(%cst : f32) | ||
outs(%12 : tensor<2x10x4096x64xf32>) -> tensor<2x10x4096x64xf32> | ||
%14:3 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d2, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction"]} | ||
ins(%arg0, %arg1, %arg2, %arg3 | ||
: tensor<2x4096x640xf16>, tensor<10x64x640xf16>, tensor<10x64x640xf16>, | ||
tensor<10x64x640xf16>) | ||
outs(%13, %13, %13 | ||
: tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>) { | ||
^bb0(%in: f16, %in_0: f16, %in_1: f16, %in_2: f16, %out: f32, %out_3: f32, %out_4: f32): | ||
%18 = arith.extf %in : f16 to f32 | ||
%19 = arith.extf %in_0 : f16 to f32 | ||
%20 = arith.mulf %18, %19 : f32 | ||
%21 = arith.addf %out, %20 : f32 | ||
%22 = arith.extf %in_1 : f16 to f32 | ||
%23 = arith.mulf %18, %22 : f32 | ||
%24 = arith.addf %out_3, %23 : f32 | ||
%25 = arith.extf %in_2 : f16 to f32 | ||
%26 = arith.mulf %18, %25 : f32 | ||
%27 = arith.addf %out_4, %26 : f32 | ||
linalg.yield %21, %24, %27 : f32, f32, f32 | ||
} -> (tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>) | ||
%15 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#0 : tensor<2x10x4096x64xf32>) outs(%11 : tensor<2x10x4096x64xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x4096x64xf16> | ||
%16 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#1 : tensor<2x10x4096x64xf32>) outs(%11 : tensor<2x10x4096x64xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x4096x64xf16> | ||
%17 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#2 : tensor<2x10x4096x64xf32>) outs(%11 : tensor<2x10x4096x64xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x4096x64xf16> | ||
return %15, %16, %17 | ||
: tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16> | ||
} | ||
// CHECK-LABEL: func @fused_contraction_1 | ||
// CHECK-COUNT-24: amdgpu.mfma | ||
|
||
// ----- | ||
|
||
func.func @fused_contraction_2(%arg0: tensor<4096x640xf32>, | ||
%arg1 : tensor<640x640xf32>, %arg2 : tensor<640x640xf32>, | ||
%arg3 : tensor<640x640xf32>) | ||
-> (tensor<4096x640xf32>, tensor<4096x640xf32>, tensor<4096x640xf32>) { | ||
%11 = tensor.empty() : tensor<4096x640xf32> | ||
%12 = tensor.empty() : tensor<4096x640xf32> | ||
%cst = arith.constant 0.0: f32 | ||
%13 = linalg.fill ins(%cst : f32) | ||
outs(%12 : tensor<4096x640xf32>) -> tensor<4096x640xf32> | ||
%14:3 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, | ||
affine_map<(d0, d1, d2) -> (d2, d1)>, | ||
affine_map<(d0, d1, d2) -> (d2, d1)>, | ||
affine_map<(d0, d1, d2) -> (d2, d1)>, | ||
affine_map<(d0, d1, d2) -> (d0, d1)>, | ||
affine_map<(d0, d1, d2) -> (d0, d1)>, | ||
affine_map<(d0, d1, d2) -> (d0, d1)>], | ||
iterator_types = ["parallel", "parallel", "reduction"]} | ||
ins(%arg0, %arg1, %arg2, %arg3 | ||
: tensor<4096x640xf32>, tensor<640x640xf32>, tensor<640x640xf32>, | ||
tensor<640x640xf32>) | ||
outs(%13, %13, %13 | ||
: tensor<4096x640xf32>, tensor<4096x640xf32>, tensor<4096x640xf32>) { | ||
^bb0(%in: f32, %in_0: f32, %in_1: f32, %in_2: f32, %out: f32, %out_3: f32, %out_4: f32): | ||
%20 = arith.mulf %in, %in_0 : f32 | ||
%21 = arith.addf %out, %20 : f32 | ||
%23 = arith.mulf %in, %in_1 : f32 | ||
%24 = arith.addf %out_3, %23 : f32 | ||
%26 = arith.mulf %in, %in_2 : f32 | ||
%27 = arith.addf %out_4, %26 : f32 | ||
linalg.yield %21, %24, %27 : f32, f32, f32 | ||
} -> (tensor<4096x640xf32>, tensor<4096x640xf32>, tensor<4096x640xf32>) | ||
return %14#0, %14#1, %14#2 | ||
: tensor<4096x640xf32>, tensor<4096x640xf32>, tensor<4096x640xf32> | ||
} | ||
// CHECK-LABEL: func @fused_contraction_2 | ||
// CHECK-COUNT-24: amdgpu.mfma | ||
|
||
// ----- | ||
|
||
func.func @fused_contraction_3(%arg0 : tensor<2x4096x640xi8>, | ||
%arg1 : tensor<2x640x640xi8>, %arg2 : tensor<2x640x640xi8>) | ||
-> (tensor<2x4096x640xf16>, tensor<2x4096x640xf16>) { | ||
%c0_i32 = arith.constant 0 : i32 | ||
%18 = tensor.empty() : tensor<2x4096x640xf16> | ||
%19 = tensor.empty() : tensor<2x4096x640xi32> | ||
%20 = linalg.fill ins(%c0_i32 : i32) | ||
outs(%19 : tensor<2x4096x640xi32>) -> tensor<2x4096x640xi32> | ||
%21:2 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "reduction"]} | ||
ins(%arg0, %arg1, %arg2 : tensor<2x4096x640xi8>, tensor<2x640x640xi8>, tensor<2x640x640xi8>) | ||
outs(%20, %20 : tensor<2x4096x640xi32>, tensor<2x4096x640xi32>) { | ||
^bb0(%in: i8, %in_0: i8, %in_1: i8, %out: i32, %out_2: i32): | ||
%24 = arith.extsi %in : i8 to i32 | ||
%25 = arith.extsi %in_0 : i8 to i32 | ||
%26 = arith.muli %24, %25 : i32 | ||
%27 = arith.addi %out, %26 : i32 | ||
%28 = arith.extsi %in_1 : i8 to i32 | ||
%29 = arith.muli %24, %28 : i32 | ||
%30 = arith.addi %out_2, %29 : i32 | ||
linalg.yield %27, %30 : i32, i32 | ||
} -> (tensor<2x4096x640xi32>, tensor<2x4096x640xi32>) | ||
%22 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, | ||
affine_map<(d0, d1, d2) -> (d0, d1, d2)>], | ||
iterator_types = ["parallel", "parallel", "parallel"]} | ||
ins(%21#0 : tensor<2x4096x640xi32>) outs(%18 : tensor<2x4096x640xf16>) { | ||
^bb0(%in: i32, %out: f16): | ||
%27 = arith.sitofp %in : i32 to f32 | ||
%29 = arith.truncf %27 : f32 to f16 | ||
linalg.yield %29 : f16 | ||
} -> tensor<2x4096x640xf16> | ||
%23 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, | ||
affine_map<(d0, d1, d2) -> (d0, d1, d2)>], | ||
iterator_types = ["parallel", "parallel", "parallel"]} | ||
ins(%21#1 : tensor<2x4096x640xi32>) outs(%18 : tensor<2x4096x640xf16>) { | ||
^bb0(%in: i32, %out: f16): | ||
%27 = arith.sitofp %in : i32 to f32 | ||
%29 = arith.truncf %27 : f32 to f16 | ||
linalg.yield %29 : f16 | ||
} -> tensor<2x4096x640xf16> | ||
return %22, %23 : tensor<2x4096x640xf16>, tensor<2x4096x640xf16> | ||
} | ||
// CHECK-LABEL: func @fused_contraction_3 | ||
// CHECK-COUNT-24: amdgpu.mfma | ||
|
||
// ----- | ||
|
||
func.func @fused_contraction_4(%arg0: tensor<2x4096x640xf16>, | ||
%arg1 : tensor<10x64x640xf16>, %arg2 : tensor<10x64x640xf16>, | ||
%arg3 : tensor<10x64x640xf16>) | ||
-> (tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16>, tensor<2x10x64x4096xf16>) { | ||
%9 = tensor.empty() : tensor<2x10x64x4096xf16> | ||
%10 = tensor.empty() : tensor<2x10x64x4096xf32> | ||
%11 = tensor.empty() : tensor<2x10x4096x64xf16> | ||
%12 = tensor.empty() : tensor<2x10x4096x64xf32> | ||
%cst = arith.constant 0.0: f32 | ||
%fill0 = linalg.fill ins(%cst : f32) | ||
outs(%12 : tensor<2x10x4096x64xf32>) -> tensor<2x10x4096x64xf32> | ||
%fill1 = linalg.fill ins(%cst : f32) | ||
outs(%10 : tensor<2x10x64x4096xf32>) -> tensor<2x10x64x4096xf32> | ||
%14:3 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d2, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d3, d2)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction"]} | ||
ins(%arg0, %arg1, %arg2, %arg3 | ||
: tensor<2x4096x640xf16>, tensor<10x64x640xf16>, tensor<10x64x640xf16>, | ||
tensor<10x64x640xf16>) | ||
outs(%fill0, %fill0, %fill1 | ||
: tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>, tensor<2x10x64x4096xf32>) { | ||
^bb0(%in: f16, %in_0: f16, %in_1: f16, %in_2: f16, %out: f32, %out_3: f32, %out_4: f32): | ||
%18 = arith.extf %in : f16 to f32 | ||
%19 = arith.extf %in_0 : f16 to f32 | ||
%20 = arith.mulf %18, %19 : f32 | ||
%21 = arith.addf %out, %20 : f32 | ||
%22 = arith.extf %in_1 : f16 to f32 | ||
%23 = arith.mulf %18, %22 : f32 | ||
%24 = arith.addf %out_3, %23 : f32 | ||
%25 = arith.extf %in_2 : f16 to f32 | ||
%26 = arith.mulf %18, %25 : f32 | ||
%27 = arith.addf %out_4, %26 : f32 | ||
linalg.yield %21, %24, %27 : f32, f32, f32 | ||
} -> (tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>, tensor<2x10x64x4096xf32>) | ||
%15 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#0 : tensor<2x10x4096x64xf32>) outs(%11 : tensor<2x10x4096x64xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x4096x64xf16> | ||
%16 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#1 : tensor<2x10x4096x64xf32>) outs(%11 : tensor<2x10x4096x64xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x4096x64xf16> | ||
%17 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#2 : tensor<2x10x64x4096xf32>) outs(%9 : tensor<2x10x64x4096xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x64x4096xf16> | ||
return %15, %16, %17 | ||
: tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16>, tensor<2x10x64x4096xf16> | ||
} | ||
// CHECK-LABEL: func @fused_contraction_4 | ||
// CHECK-COUNT-24: amdgpu.mfma |