Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Drop upstreamed canonicalization pattern #18465

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -19,84 +19,6 @@ namespace mlir::iree_compiler::IREE::Flow {

namespace {

/// Folds a chain of `tensor.pad` ops with the same constant padding value.
///
/// Example:
///
/// ```mlir
/// %1 = tensor.pad %0 low[0, 1] high[0, 2] {
/// tensor.yield %val
/// } : tensor<1x2xf32> to tensor<2x5xf32>
/// %res = tensor.pad %1 low[0, 2] high[3, 0] {
/// tensor.yield %val
/// } : tensor<1x5xf32> to tensor<5x7xf32>
/// ```
///
/// folds into:
///
/// ```mlir
/// %res = tensor.pad %0 low[0, 3] high[3, 2] {
/// tensor.yield %val
/// } : tensor<1x2xf32> to tensor<5x7xf32>
/// ```
///
/// NOTE: This wasn't sent upstream as a canonicalization due to the use of
/// the Affine dialect.
struct FoldConsecutiveConstantPadding : public OpRewritePattern<tensor::PadOp> {
using OpRewritePattern<tensor::PadOp>::OpRewritePattern;

LogicalResult matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const override {
if (padOp.getNofold()) {
return failure();
}
auto producerPad = padOp.getSource().getDefiningOp<tensor::PadOp>();
if (!producerPad || producerPad.getNofold()) {
return rewriter.notifyMatchFailure(
padOp, "producer is not a foldable tensor.pad op");
}

// Fail if the tensor::PadOps padding values do not match.
Value consumerPadValue = padOp.getConstantPaddingValue();
Value producerPadValue = producerPad.getConstantPaddingValue();
if (!consumerPadValue || !producerPadValue ||
consumerPadValue != producerPadValue) {
return rewriter.notifyMatchFailure(
padOp, "cannot fold PadOps with different padding values");
}

Location loc = padOp.getLoc();
AffineExpr d0, d1;
bindDims(rewriter.getContext(), d0, d1);

// Combine the low/high paddings of the two tensor::PadOps.
auto addPaddings = [&](ArrayRef<OpFoldResult> consumerPaddings,
ArrayRef<OpFoldResult> producerPaddings) {
SmallVector<OpFoldResult> sumPaddings;
for (auto [consumerIndex, producerIndex] :
llvm::zip_equal(consumerPaddings, producerPaddings)) {
sumPaddings.push_back(affine::makeComposedFoldedAffineApply(
rewriter, loc, d0 + d1, {consumerIndex, producerIndex}));
}
return sumPaddings;
};

SmallVector<OpFoldResult> newHighPad =
addPaddings(padOp.getMixedHighPad(), producerPad.getMixedHighPad());
SmallVector<OpFoldResult> newLowPad =
addPaddings(padOp.getMixedLowPad(), producerPad.getMixedLowPad());

auto newPadOp = rewriter.create<tensor::PadOp>(
padOp.getLoc(), padOp.getResultType(), producerPad.getSource(),
newLowPad, newHighPad, padOp.getNofold(),
getPrunedAttributeList(padOp, tensor::PadOp::getAttributeNames()));
rewriter.inlineRegionBefore(padOp.getRegion(), newPadOp.getRegion(),
newPadOp.getRegion().begin());
rewriter.replaceOp(padOp, newPadOp.getResult());
return success();
}
};

/// Canonicalize operations in nested regions.
struct CanonicalizerPass
: public impl::CanonicalizerPassBase<CanonicalizerPass> {
Expand Down Expand Up @@ -124,7 +46,6 @@ struct CanonicalizerPass
// compilation phase.
tensor::populateMergeConsecutiveInsertExtractSlicePatterns(owningPatterns);
IREE::Flow::populateTensorDialectCastOpPattern(context, owningPatterns);
owningPatterns.add<FoldConsecutiveConstantPadding>(context);

patterns =
std::make_shared<FrozenRewritePatternSet>(std::move(owningPatterns));
Expand Down
Original file line number Diff line number Diff line change
@@ -1,90 +1,5 @@
// RUN: iree-opt --iree-flow-canonicalize %s --split-input-file --mlir-print-local-scope | FileCheck %s

util.func public @merge_constant_padding(%arg0: tensor<2x3xf32>, %pad_value: f32) -> tensor<7x8xf32> {
%pad0 = tensor.pad %arg0 low[1, 1] high[1, 0] {
^bb0(%b0: index, %b1 : index):
tensor.yield %pad_value : f32
} : tensor<2x3xf32> to tensor<4x4xf32>
%pad1 = tensor.pad %pad0 low[0, 2] high[3, 2] {
^bb0(%b2: index, %b3 : index):
tensor.yield %pad_value : f32
} : tensor<4x4xf32> to tensor<7x8xf32>
util.return %pad1 : tensor<7x8xf32>
}
// CHECK-LABEL: util.func public @merge_constant_padding
// CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]: tensor<2x3xf32>
// CHECK-SAME: %[[PADVAL:[A-Za-z0-9]+]]: f32
// CHECK: %[[PAD:.+]] = tensor.pad %[[ARG0]] low[1, 3] high[4, 2]
// CHECK: tensor.yield %[[PADVAL]]
// CHECK: util.return %[[PAD]]

// -----

util.func public @merge_constant_padding_dynamic(%arg0: tensor<?x?xf32>, %idx: index, %pad_value: f32) -> tensor<?x?xf32> {
%pad0 = tensor.pad %arg0 low[%idx, 1] high[1, 0] {
^bb0(%b0: index, %b1 : index):
tensor.yield %pad_value : f32
} : tensor<?x?xf32> to tensor<?x?xf32>
%pad1 = tensor.pad %pad0 low[0, 2] high[%idx, 2] {
^bb0(%b2: index, %b3 : index):
tensor.yield %pad_value : f32
} : tensor<?x?xf32> to tensor<?x?xf32>
util.return %pad1 : tensor<?x?xf32>
}
// CHECK-LABEL: util.func public @merge_constant_padding_dynamic
// CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[IDX:[A-Za-z0-9]+]]: index
// CHECK-SAME: %[[PADVAL:[A-Za-z0-9]+]]: f32
// CHECK: %[[HIGH:.+]] = affine.apply affine_map<()[s0] -> (s0 + 1)>()[%[[IDX]]]
// CHECK: %[[PAD:.+]] = tensor.pad %[[ARG0]] low[%[[IDX]], 3] high[%[[HIGH]], 2]
// CHECK: tensor.yield %[[PADVAL]]
// CHECK: util.return %[[PAD]]

// -----

util.func public @dont_merge_constant_padding_nofold(%arg0: tensor<2x3xf32>, %pad_value: f32) -> tensor<7x8xf32> {
%pad0 = tensor.pad %arg0 low[1, 1] high[1, 0] {
^bb0(%b0: index, %b1 : index):
tensor.yield %pad_value : f32
} : tensor<2x3xf32> to tensor<4x4xf32>
%pad1 = tensor.pad %pad0 nofold low[0, 2] high[3, 2] {
^bb0(%b2: index, %b3 : index):
tensor.yield %pad_value : f32
} : tensor<4x4xf32> to tensor<7x8xf32>
util.return %pad1 : tensor<7x8xf32>
}

// Verify that folding does not happen if it would drop a nofold attribute

// CHECK-LABEL: util.func public @dont_merge_constant_padding_nofold
// CHECK: tensor.pad
// CHECK: tensor.pad {{.*}} nofold

// -----

util.func public @dont_merge_constant_padding_different_vals(
%arg0: tensor<2x3xf32>,
%pad_value0: f32,
%pad_value1: f32) -> tensor<7x8xf32> {
%pad0 = tensor.pad %arg0 low[1, 1] high[1, 0] {
^bb0(%b0: index, %b1 : index):
tensor.yield %pad_value0 : f32
} : tensor<2x3xf32> to tensor<4x4xf32>
%pad1 = tensor.pad %pad0 nofold low[0, 2] high[3, 2] {
^bb0(%b2: index, %b3 : index):
tensor.yield %pad_value1 : f32
} : tensor<4x4xf32> to tensor<7x8xf32>
util.return %pad1 : tensor<7x8xf32>
}

// Verify that folding does not happen if it would drop a nofold attribute

// CHECK-LABEL: util.func public @dont_merge_constant_padding_different_vals
// CHECK: tensor.pad
// CHECK: tensor.pad

// -----

util.func public @tensor_cast_to_reshape(%reshape_17 : tensor<?x?x?x?xf32>, %65 : tensor<?x12x?x64xf32>, %0 : index, %1 : index) -> tensor<?x?x?x?xf32> {
%cast = tensor.cast %reshape_17 : tensor<?x?x?x?xf32> to tensor<?x?x12x64xf32>
%66 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>,
Expand Down
Loading