-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
76 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
import ivy | ||
import ivy.functional.frontends.torch as torch_frontend | ||
from ivy.functional.frontends.torch.func_wrapper import to_ivy_arrays_and_back | ||
|
||
|
||
@to_ivy_arrays_and_back | ||
def cosine_similarity(x1, x2, *, dim=1, eps=1e-08): | ||
x1, x2 = torch_frontend.promote_types_of_torch_inputs(x1, x2) | ||
|
||
if len(x1.shape) == len(x2.shape) and len(x2.shape) >= 2: | ||
numerator = ivy.sum(x1 * x2, axis=dim) | ||
x1_squared_norm = ivy.sum(ivy.square(x1), axis=dim) | ||
x2_squared_norm = ivy.sum(ivy.square(x2), axis=dim) | ||
else: | ||
numerator = ivy.sum(x1 * x2) | ||
x1_squared_norm = ivy.sum(ivy.square(x1)) | ||
x2_squared_norm = ivy.sum(ivy.square(x2)) | ||
|
||
x1_norm = ivy.sqrt(x1_squared_norm) | ||
x2_norm = ivy.sqrt(x2_squared_norm) | ||
norm_mm = x1_norm * x2_norm | ||
norm_mm, eps = torch_frontend.promote_types_of_torch_inputs(norm_mm, eps) | ||
denominator = ivy.maximum(norm_mm, eps) | ||
|
||
cosine = numerator / denominator | ||
return cosine |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
from hypothesis import assume, given, strategies as st | ||
|
||
# local | ||
import ivy_tests.test_ivy.helpers as helpers | ||
from ivy_tests.test_ivy.helpers import handle_cmd_line_args | ||
|
||
|
||
def _filter_dtypes(input_dtype): | ||
assume(("bfloat16" not in input_dtype) and ("float16" not in input_dtype)) | ||
|
||
|
||
# Cosine Similarity | ||
@handle_cmd_line_args | ||
@given( | ||
d_type_and_x=helpers.dtype_and_values( | ||
available_dtypes=helpers.get_dtypes("float", full=True), | ||
min_value=2, | ||
max_value=5, | ||
min_dim_size=2, | ||
shared_dtype=True, | ||
num_arrays=2, | ||
), | ||
dim=st.integers(min_value=-1, max_value=0), | ||
num_positional_args=helpers.num_positional_args( | ||
fn_name="ivy.functional.frontends.torch.nn.functional.cosine_similarity" | ||
), | ||
) | ||
def test_torch_cosine_similarity( | ||
d_type_and_x, | ||
dim, | ||
with_out, | ||
as_variable, | ||
num_positional_args, | ||
native_array, | ||
): | ||
dtype, x = d_type_and_x | ||
_filter_dtypes(dtype) | ||
helpers.test_frontend_function( | ||
input_dtypes=dtype, | ||
as_variable_flags=as_variable, | ||
with_out=with_out, | ||
num_positional_args=num_positional_args, | ||
native_array_flags=native_array, | ||
frontend="torch", | ||
fn_tree="nn.functional.cosine_similarity", | ||
rtol=1e-01, | ||
x1=x[0], | ||
x2=x[1], | ||
dim=dim, | ||
) |