A one-stop repository for low-code easily-installable object detection pipelines.
(See the licenses for each pipeline and use accordingly)
-
A) GluonCV Finetune: Original - https://gluon-cv.mxnet.io/build/examples_detection/index.html
- SSD with Vgg16
- SSD with Resnet50
- SSD with Resnet101
- SSD with MobileNet1.0
- YoloV3 with Darknet53
- YoloV3 with MobileNet1.0
-
B) TorchVision Finetune: Original - https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
- Faster-RCNN with MobileNet2.0
-
C) MX-RCNN: Original - https://github.com/ijkguo/mx-rcnn
- Faster-RCNN with VGG16
- Faster-RCNN with Resnet50
- Faster-RCNN with Resnet101
-
D) Efficient-Det: Original - https://github.com/signatrix/efficientdet
-
E) Pytorch-Retinanet: Original - https://github.com/yhenon/pytorch-retinanet
- Resnet18
- Resnet34
- Resnet50
- Resnet101
- Resnet152
-
F) CornerNet-Lite: Original - https://github.com/princeton-vl/CornerNet-Lite
- CornerNet-Saccade
- CornerNet-Squeeze
-
G) YOLOV3: Original - https://github.com/ultralytics/yolov3
- yolov3
- yolov3s
- yolov3-spp
- yolov3-spp3
- yolov3-tiny
- yolov3-spp-matrix
- csresnext50-panet-spp
-
H) RFBNet: Original - https://github.com/ruinmessi/RFBNet
- VGG16
- E_VGG16
- MobileNet
-
A) GluonCV Finetune
- Check - Monk_Object_Detection/1_gluoncv_finetune/
-
B) TorchVision Finetune
- Check - Monk_Object_Detection/2_pytorch_finetune/
-
C) MX-RCNN
- Check - Monk_Object_Detection/3_mxrcnn/
-
D) Efficient-Det
- Check - Monk_Object_Detection/4_efficientdet/
-
E) Pytorch-Retinanet
- Check - Monk_Object_Detection/5_pytorch_retinanet/
-
F) CornerNet-Lite
- Check - Monk_Object_Detection/6_cornernet_lite/
-
G) YoloV3
- Check - Monk_Object_Detection/7_yolov3/
-
H) RFBNet
- Check - Monk_Object_Detection/8_pytorch_rfbnet
Tessellate Imaging - https://www.tessellateimaging.com/
Check out Monk AI - (https://github.com/Tessellate-Imaging/monk_v1)
Monk features
- low-code
- unified wrapper over major deep learning framework - keras, pytorch, gluoncv
- syntax invariant wrapper
Enables developers
- to create, manage and version control deep learning experiments
- to compare experiments across training metrics
- to quickly find best hyper-parameters
To contribute to Monk AI or Monk Object Detection repository raise an issue in the git-repo or dm us on linkedin
- Abhishek - https://www.linkedin.com/in/abhishek-kumar-annamraju/
- Akash - https://www.linkedin.com/in/akashdeepsingh01/
Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.