-
Notifications
You must be signed in to change notification settings - Fork 135
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
jbloom-md
committed
Mar 10, 2024
1 parent
3949a46
commit e75323c
Showing
4 changed files
with
1,594 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
import pandas as pd | ||
import torch | ||
from tqdm import tqdm | ||
from transformer_lens import HookedTransformer | ||
|
||
from sae_training.sparse_autoencoder import SparseAutoencoder | ||
|
||
|
||
@torch.no_grad() | ||
def get_feature_property_df( | ||
sparse_autoencoder: SparseAutoencoder, feature_sparsity: torch.Tensor | ||
): | ||
""" | ||
feature_property_df = get_feature_property_df(sparse_autoencoder, log_feature_density.cpu()) | ||
""" | ||
|
||
W_dec_normalized = ( | ||
sparse_autoencoder.W_dec.cpu() | ||
) # / sparse_autoencoder.W_dec.cpu().norm(dim=-1, keepdim=True) | ||
W_enc_normalized = ( | ||
sparse_autoencoder.W_enc.cpu() | ||
/ sparse_autoencoder.W_enc.cpu().norm(dim=-1, keepdim=True) | ||
) | ||
d_e_projection = W_dec_normalized @ W_enc_normalized.T | ||
b_dec_projection = sparse_autoencoder.b_dec.cpu() @ W_dec_normalized.T | ||
|
||
temp_df = pd.DataFrame( | ||
{ | ||
"log_feature_sparsity": feature_sparsity + 1e-10, | ||
"d_e_projection": d_e_projection, | ||
# "d_e_projection_normalized": d_e_projection_normalized, | ||
"b_enc": sparse_autoencoder.b_enc.detach().cpu(), | ||
"b_dec_projection": b_dec_projection, | ||
"feature": list(range(sparse_autoencoder.cfg.d_sae)), | ||
"dead_neuron": (feature_sparsity < -9).cpu(), | ||
} | ||
) | ||
|
||
return temp_df | ||
|
||
|
||
@torch.no_grad() | ||
def get_stats_df(projection: torch.Tensor): | ||
""" | ||
Returns a dataframe with the mean, std, skewness and kurtosis of the projection | ||
""" | ||
mean = projection.mean(dim=1, keepdim=True) | ||
diffs = projection - mean | ||
var = (diffs**2).mean(dim=1, keepdim=True) | ||
std = torch.pow(var, 0.5) | ||
zscores = diffs / std | ||
skews = torch.mean(torch.pow(zscores, 3.0), dim=1) | ||
kurtosis = torch.mean(torch.pow(zscores, 4.0), dim=1) | ||
|
||
stats_df = pd.DataFrame( | ||
{ | ||
"feature": range(len(skews)), | ||
"mean": mean.numpy().squeeze(), | ||
"std": std.numpy().squeeze(), | ||
"skewness": skews.numpy(), | ||
"kurtosis": kurtosis.numpy(), | ||
} | ||
) | ||
|
||
return stats_df | ||
|
||
|
||
@torch.no_grad() | ||
def get_all_stats_dfs( | ||
gpt2_small_sparse_autoencoders: dict[str, SparseAutoencoder], # [hook_point, sae] | ||
gpt2_small_sae_sparsities: dict[str, torch.Tensor], # [hook_point, sae] | ||
model: HookedTransformer, | ||
cosine_sim: bool = False, | ||
): | ||
stats_dfs = [] | ||
pbar = tqdm(gpt2_small_sparse_autoencoders.keys()) | ||
for key in pbar: | ||
layer = int(key.split(".")[1]) | ||
sparse_autoencoder = gpt2_small_sparse_autoencoders[key] | ||
pbar.set_description(f"Processing layer {sparse_autoencoder.cfg.hook_point}") | ||
W_U_stats_df_dec, _ = get_W_U_W_dec_stats_df( | ||
sparse_autoencoder.W_dec.cpu(), model, cosine_sim | ||
) | ||
log_feature_sparsity = gpt2_small_sae_sparsities[key].detach().cpu() | ||
W_U_stats_df_dec["log_feature_sparsity"] = log_feature_sparsity | ||
W_U_stats_df_dec["layer"] = layer + (1 if "post" in key else 0) | ||
stats_dfs.append(W_U_stats_df_dec) | ||
|
||
W_U_stats_df_dec_all_layers = pd.concat(stats_dfs, axis=0) | ||
return W_U_stats_df_dec_all_layers | ||
|
||
|
||
@torch.no_grad() | ||
def get_W_U_W_dec_stats_df( | ||
W_dec: torch.Tensor, model: HookedTransformer, cosine_sim: bool = False | ||
) -> tuple[pd.DataFrame, torch.Tensor]: | ||
W_U = model.W_U.detach().cpu() | ||
if cosine_sim: | ||
W_U = W_U / W_U.norm(dim=0, keepdim=True) | ||
dec_projection_onto_W_U = W_dec @ W_U | ||
W_U_stats_df = get_stats_df(dec_projection_onto_W_U) | ||
return W_U_stats_df, dec_projection_onto_W_U |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
import webbrowser | ||
|
||
import torch | ||
from huggingface_hub import hf_hub_download | ||
|
||
from sae_training.sparse_autoencoder import SparseAutoencoder | ||
|
||
|
||
def get_all_gpt2_small_saes() -> ( | ||
tuple[dict[str, SparseAutoencoder], dict[str, torch.Tensor]] | ||
): | ||
|
||
REPO_ID = "jbloom/GPT2-Small-SAEs" | ||
gpt2_small_sparse_autoencoders = {} | ||
gpt2_small_saes_log_feature_sparsities = {} | ||
for layer in range(12): | ||
FILENAME = f"final_sparse_autoencoder_gpt2-small_blocks.{layer}.hook_resid_pre_24576.pt" | ||
path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME) | ||
sae = SparseAutoencoder.load_from_pretrained(f"{path}") | ||
sae.cfg.use_ghost_grads = False | ||
gpt2_small_sparse_autoencoders[sae.cfg.hook_point] = sae | ||
|
||
FILENAME = f"final_sparse_autoencoder_gpt2-small_blocks.{layer}.hook_resid_pre_24576_log_feature_sparsity.pt" | ||
path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME) | ||
log_feature_density = torch.load(path, map_location=sae.cfg.device) | ||
gpt2_small_saes_log_feature_sparsities[sae.cfg.hook_point] = log_feature_density | ||
|
||
# get the final one | ||
layer = 11 | ||
FILENAME = ( | ||
f"final_sparse_autoencoder_gpt2-small_blocks.{layer}.hook_resid_post_24576.pt" | ||
) | ||
path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME) | ||
sae = SparseAutoencoder.load_from_pretrained(f"{path}") | ||
sae.cfg.use_ghost_grads = False | ||
gpt2_small_sparse_autoencoders[sae.cfg.hook_point] = sae | ||
|
||
FILENAME = f"final_sparse_autoencoder_gpt2-small_blocks.{layer}.hook_resid_post_24576_log_feature_sparsity.pt" | ||
path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME) | ||
log_feature_density = torch.load(path, map_location=sae.cfg.device) | ||
gpt2_small_saes_log_feature_sparsities[sae.cfg.hook_point] = log_feature_density | ||
|
||
return gpt2_small_sparse_autoencoders, gpt2_small_saes_log_feature_sparsities | ||
|
||
|
||
def open_neuronpedia(feature_id: int, layer: int = 0): | ||
|
||
path_to_html = f"https://www.neuronpedia.org/gpt2-small/{layer}-res-jb/{feature_id}" | ||
|
||
print(f"Feature {feature_id}") | ||
webbrowser.open_new_tab(path_to_html) |
Oops, something went wrong.